研究業績リスト 投稿論文 (1) A. Ueno, Y. Kayaki, and T. Ikariya, “Heterolysis of NH-Indoles by Bifunctional Amido Complexes and Applications to Carboxylation with Carbon Dioxide”, Organometallics, 33, 4479–4485 (2014). (2) T. Ikariya and Y. Kayaki, “Hydrogenation of Carboxylic Acid Derivatives with Bifunctional Ruthenium Catalysts”, Pure Appl. Chem., 86, 933–943 (2014). (3) J. Moritani, Y. Hasegawa, Y. Kayaki, and T. Ikariya, “Aerobic Oxidative Desymmetrization of meso-Diols with Bifunctional Amidoiridium Catalysts Bearing Chiral N-Sulfonyldiamine Ligands”, Tetrahedron Lett., 55, 1188–1191 (2014). (4) S. Hase, Y. Kayaki, and T. Ikariya, “NHC-Gold(I) Complexes as Effective Catalysts for Carboxylative Cyclization of Propargylamines with Carbon Dioxide”, Organometallics, 32, 5285–5288 (2013). (5) A. Ueno, Y. Kayaki, and T. Ikariya, “Cycloaddition of Tertiary Aziridines and Carbon Dioxide Using a Recyclable Organocatalyst, 1,3-Di-tert-butylimidazolium-2-carboxylate: A Straightforward Access to 3-Substituted 2-Oxazolidones”, Green Chem., 15, 425–430 (2013). (6) Y. Sato, Y. Kayaki, and T. Ikariya, “Efficient Dynamic Kinetic Resolution of Racemic Secondary Alcohols by a Chemoenzymatic System Using Bifunctional Iridium Complexes with C–N Chelate Amido Ligands”, Chem. Commun., 48, 3635–3637 (2012). (7) N. Miyamoto, T. Tsukahara, Y. Kachi, M. Harada, Y. Kayaki, T. Ikariya, and Y. Ikeda, “Studies on Solubility of Uranyl Complexes in Supercritical Carbon Dioxide and Its Controlling Factors Using UV-Visible and 17 O- and 19 F-NMR Spectroscopy”, J. Nucl. Sci. Technol., 49, 37–46 (2012). (8) T. Touge, T. Hakamata, H. Nara, T. Kobayashi, N. Sayo, T. Saito, Y. Kayaki, and T. Ikariya, “Oxo-Tethered Ruthenium(II) Complex as a Bifunctional Catalyst for Asymmetric Transfer Hydrogenation and H2 Hydrogenation”, J. Am. Chem. Soc., 133, 14960–14963 (2011). (9) S. Kamezaki, S. Akiyama, Y. Kayaki, S. Kuwata, and T. Ikariya, “Asymmetric Nitrile-Hydration wuth Bifunctional Ruthenium Catalysts Bearing Chiral N-Sulfonyldiamine Ligands”, Tetrahedron: Asymmetry, 21, 1169–1172 (2010). (10) T. Ikariya, S. Kuwata, and Y. Kayaki, “Aerobic Oxidation with Bifunctional Molecular Catalysts”, Pure Appl. Chem., 82, 1471–1483 (2010). (11) Y. Kayaki, N. Mori, and T. Ikariya, “Palladium-Catalyzed Carboxylative Cyclization of α-Allenyl Amines in Dense Carbon Dioxide”, Tetrahedron Lett., 50, 6491–6493 (2009). 1 (12) Y. Kayaki, M. Yamamoto, and T. Ikariya, “N-Heterocyclic Carbenes as Efficient Organocatalysts for CO2 Fixation Reactions”, Angew. Chem. Int. Ed., 48, 4194–4197 (2009). Selected as a Hot Paper. (13) S. Shirai, H. Nara, Y. Kayaki, and T. Ikariya, “Remarkable Positive Effect of Silver Salts on Asymmetric Hydrogenation of Acyclic Imines with Cp*Ir Complexes Bearing Chiral N-Sulfonylated Diamine Ligands”, Organometallics, 28, 802–809 (2009). (14) T. Seki, Y. Kokubo, S. Ichikawa, T. Suzuki, Y. Kayaki, and T. Ikariya, “Mesoporous Silica-catalysed Continuous Chemical Fixation of CO2 with N,N’-Dimethylethylenediamine in Supercritical CO2: Efficient Synthesis of 1,3-Dimethyl-2-imidazolidinone”, Chem. Commun., 349–351 (2009). (15) T. Tsukahara, Y. Kachi, Y. Kayaki, T. Ikariya, and Y. Ikeda, “1H-, 13C-, and 19F-NMR Studies on Molecular Interactions of CO2 with β-Diketones and UO2(β-diketonato)2DMSO Complexes in Supercritical CO2”, J. Phys. Chem. B, 112, 16445–16454 (2008). (16) Y. Kayaki, T. Suzuki, and T. Ikariya, “Utilization of N,N-Dialkylcarbamic Acid Derived from Secondary Amine and Supercritical Carbon Dioxide: Stereoselective Synthesis of Z Alkenyl Carbamates with a CO2–Soluble Ruthenium–P(OC2H5)3 Catalyst”, Chem. Asian J., 3, 1865–1870 (2008). (17) Y. Kayaki, H. Ikeda, J.-I. Tsurumaki, I. Shimizu, and A. Yamamoto, “Catalytic Behavior of Cationic Hydridoruthenium(II) Complex, [RuH(NH3)(PMe3)4]+, in H2-Hydrogenation and Transfer Hydrogenation of Imines”, Bull. Chem. Soc. Jpn., 81, 1053–1061 (2008). Selected as a BCSJ Award Article. (18) S. Arita, T. Koike, Y. Kayaki, and T. Ikariya, “Aerobic Oxidation of Alcohols with Bifunctional Transition Metal Catalysts Bearing C–N Chelate Ligands”, Chem. Asian J., 3, 1479–1485 (2008). (19) S. Arita, T. Koike, Y. Kayaki, and T. Ikariya, “Synthesis and Reactivities of Cp*Ir Amide and Hydride Complexes Bearing C–N Chelate Ligands”, Organometallics, 27, 2795–2802 (2008). (20) S. Arita, T. Koike, Y. Kayaki, and T. Ikariya, “Aerobic Oxidative Kinetic Resolution of Racemic Secondary Alcohols with Chiral Bifunctional Amido Complexes”, Angew. Chem. Int. Ed., 47, 2447–2449 (2008). Selected as VIP (Very Important Paper). (21) Y. Kachi, Y. Kayaki, T. Tsukahara, T. Ikariya, and Y. Ikeda, “Comparative Studies on Exchange Reactions of Hexafluoroacetylacetonate in Bis(hexafluoroacetylacetonato)(dimethyl sulfoxide)dioxouranium(VI) in Nonaqueous Solvent and Supercritical CO2”, Inorg. Chem., 47, 349–359 (2008). 2 (22) Y. Kayaki, Y. Shimokawatoko, and T. Ikariya, “Synthesis of Ruthenium(II) Complexes Containing Hydroxymethylphosphines and Their Catalytic Activities for Hydrogenation of Supercritical Carbon Dioxide”, Inorg. Chem., 46, 5791–5797 (2007). (23) Y. Kayaki, M. Yamamoto, and T. Ikariya, “Stereoselective Formation of α-Alkylidene Cyclic Carbonates via Carboxylative Cyclization of Propargyl Alcohols in Supercritical Carbon Dioxide”, J. Org. Chem., 72, 647–649 (2007). (24) Y. Kachi, T. Tsukahara, Y. Kayaki, T. Ikariya, J. Sato, and Y. Ikeda, “Raman Spectral Shifts of CO2 as Measure of CO2-philicity of Solutes in Supercritical Carbon Dioxide”, J. Supercrit. Fluids, 40, 20–26 (2007). (25) Y. Kayaki, M. Yamamoto, T. Suzuki, and T. Ikariya, “Carboxylative Cyclization of Propargylamines with Supercritical Carbon Dioxide”, Green Chem., 8, 1019–1021 (2006). (26) T. Tsukahara, Y. Kachi, Y. Kayaki, T. Ikariya, and Y. Ikeda, “Spectroscopic Study on Solubility of UO2(β-diketonate)2dmso Trifluoroacetylacetonate, Complexes Hexafluoroacetylacetonate; (β-diketonate dmso = = Dimethyl Acetylacetonate, Sulfoxide) in Supercritical Carbon Dioxide”, J. Supercrit. Fluids, 39, 6–12 (2006). (27) O. Ihata, Y. Kayaki, and T. Ikariya, “Aliphatic Poly(urethane-amine)s Synthesized by Copolymerization of Aziridines and Supercritical Carbon Dioxide”, Macromolecules, 38, 6429–6434 (2005). (28) O. Ihata, Y. Kayaki, and T. Ikariya, “Double Stimuli-responsive Behavior of Aliphatic Poly(urethane-amine)s Derived from Supercritical Carbon Dioxide”, Chem. Commun., 2268–2270 (2005). (29) O. Ihata, Y. Kayaki, and T. Ikariya, “Control of Thermoresponsive Behavior of Poly(urethane-amine)s Prepared by Copolymerization of Supercritical Carbon Dioxide and Aziridines”, Jpn. J. Polym. Sci. Tech. (Kobunshi Ronbunshu), 62, 196–199 (2005). (Japanese). (30) Y. Kayaki, T. Koda, and T. Ikariya, “A Highly Effective (Triphenyl phosphite)palladium Catalyst for a Cross–Coupling Reaction of Allylic Alcohols with Organoboronic Acids”, Eur. J. Org. Chem., 4989–4993 (2004). (31) K. Hiwatari, Y. Kayaki, K. Okita, T. Ukai, I. Shimizu, and A. Yamamoto, “Selective Oxidative Carbonylation of Amines to Oxamides and Ureas Catalyzed by Pallladium Complexes”, Bull. Chem. Soc. Jpn., 77, 2237–2250 (2004). Named as a Selected Paper. (32) T. Tsukahara, Y. Kayaki, T. Ikariya, and Y. Ikeda, “13C-NMR Spectroscopic Evaluation of the Affinity of Carbonyl Compounds for Carbon Dioxide under Supercritical Conditions”, Angew. Chem. Int. Ed., 43, 3719–3722 (2004). 3 (33) Y. Kayaki, T. Koda, and T. Ikariya, “A Halide-Free Dehydrative Allylation Using Allylic Alcohols Promoted by a Palladium-Triphenyl Phosphite Catalyst”, J. Org. Chem., 69, 2595–2597 (2004). (34) O. Ihata, Y. Kayaki, and T. Ikariya, “Synthesis of Thermoresponsive Polyurethane from 2-Methylaziridine and Supercritical Carbon Dioxide”, Angew. Chem. Int. Ed., 43, 717–719 (2004). (35) Y. Kayaki, Y. Shimokawatoko, and T. Ikariya, “Amphiphilic Resin-Supported Ruthenium(II) Complexes as Recyclable Catalysts for the Hydrogenation of Supercritical Carbon Dioxide”, Adv. Synth. Catal., 345, 175–179 (2003). (36) Y. Kayaki, T. Suzuki, Y. Noguchi, S. Sakurai, M. Imanari, and T. Ikariya, “NMR Observation of Trialkylphosphite-Palladium(II) and -Ruthenium(II) Complexes in Supercritical Carbon Dioxide”, Chem. Lett., 31, 424–425 (2002). (37) Y. Kayaki, H. Tsukamoto, M. Kaneko, I. Shimizu, A. Yamamoto, M. Tachikawa, and T. Nakajima, “Experimental and Theoretical Studies on the Course of CO Insertion into Pt–C and Pd–C Bonds in + Neutral and Cationic - [MR{P(CH3)3}2(s)] BF4 (M = Pt, Pd, Complexes, [MR(Cl){P(CH3)3}2] and R = CH3, C6H5, s = coordinated solvent)”, J. Organomet. Chem., 622, 199–209 (2001). (38) Y. Kayaki, T. Suzuki, and T. Ikariya, “Water-Soluble Trialkylphosphine-Ruthenium(II) Complexes as Efficient Catalysts for Hydrogenation of Supercritical Carbon Dioxide”, Chem. Lett., 30, 1016–1017 (2001). (39) Y. Kayaki, Y. Noguchi, and T. Ikariya, “Enhanced Product Selectivity in the Mizoroki-Heck Reaction Using a Supercritical Carbon Dioxide-Liquid Biphasic System”, Chem. Commun., 2245–2246 (2000). (40) A. Yamamoto, Y. Kayaki, K. Nagayama, and I. Shimizu, “Chemistry of Monoorganopalladium Complexes Relevant to Catalysis”, Synlett, 925–937 (2000). (41) K, Mikami, S. Matsukawa, Y. Kayaki, and T. Ikariya, “Asymmetric Mukaiyama Aldol Reaction of a Ketene Silyl Acetal of Thioester Catalyzed by a Binaphthol–Titanium Complex in Supercritical Fluoroform”, Tetrahedron Lett., 41, 1931–1934 (2000). (42) T. Ikariya, Y. Kayaki, Y. Kishimoto, and Y. Noguchi, “Highly Efficient Carbonylation Reactions of Organic Halides in Supercritical Carbon Dioxide”, Prog. Nucl. Energy, 37, 429–434 (2000). (43) Y. Kayaki, Y. Noguchi, S. Iwasa, T. Ikariya, and R. Noyori, “An Efficient Carbonylation of Aryl Halides Catalysed by Palladium Complexes with Phosphite Ligands in Supercritical Carbon Dioxide”, Chem. Commun., 1235–1236 (1999). 4 (44) R. Kakino, K. Nagayama, Y. Kayaki, I. Shimizu, and A. Yamamoto, “Formation of a Palladalactone Complex by C–O Bond-Cleavage of Diketene Promoted by a Zerovalent Palladium Complex”, Chem. Lett., 28, 685–686 (1999). (45) Y. Kayaki, I. Shimizu, and A. Yamamoto, “Synthesis and Properties of Dimethylbis(Phosphite)Palladium(II) and Monomethylbis(phosphite)palladium(II) Complexes”, Bull. Chem. Soc. Jpn., 70, 1141–1147 (1997). (46) Y. Kayaki, I. Shimizu, and A. Yamamoto, “Removal of a Palladium-Bound Tertiary Phosphine Ligand with Silver(I) Salts to Generate Cationic Monoorganopalladium(II) Complexes Having One Trimethylphosphine Ligand”, Bull. Chem. Soc. Jpn., 70, 1135–1140 (1997). (47) Y. Kayaki, I. Shimizu, and A. Yamamoto, “Comparison of the Reactivities of Neutral and Cationic Organopalladium Complexes Toward CO, Isocyanides, and Olefins”, Bull. Chem. Soc. Jpn., 70, 917–927 (1997). (48) Y. Kayaki, I. Shimizu, and A. Yamamoto, “Reactivities of Neutral and Cationic Organopalladium Complexes”, Chem. Lett., 24, 1089–1090 (1995). (49) Y. Kayaki, F. Kawataka, I. Shimizu, and A. Yamamoto, “Remarkable Rate Enhancement in CO Insertion into + Pd-C Bond by Generating Cationic Organopalladium Complexes - (PdR(S)L2) BF4 (R = Alkyl Group, S = Acetone, L = Phosphine-Ligands) from Neutral Monoorganopalladium Complexes (PdR(X)L2) (X = Halide)”, Chem. Lett., 23, 2171–2174 (1994). (50) F. Kawataka, Y. Kayaki, I. Shimizu, and A. Yamamoto, “Synthesis and Thermolysis Behavior of Monoethylpalladium Complexes, EtPd(X)(PMe3)2 (X = Electronegative Ligands)”, Organometallics, 13, 3517–3524 (1994). 総説・解説論文 (1) 碇屋隆雄, 榧木啓人, 「金属ヒドリド試薬を猛追する分子触媒―水素によるエステル 還元反応」, 化学, 67, [9], 66–67 (2012). (2) Y. Kayaki, T. Ikariya, “Bifunctional Molecular Catalysts with Cooperating Amine/Amido Ligands”, TCI MAIL, 147, 2–9 (2012). (3) 碇屋隆雄, 榧木啓人, 「協奏機能分子触媒の化学」, TCI メール, 147, 2–11 (2010). (4) 碇屋隆雄, 榧木啓人, 「次代を拓く− 工業材料キーワード28 超臨界流体」, 工業 材料, 58[1], 48–49 (2010). (5) 碇屋隆雄, 榧木啓人, 「キーワード50 超臨界流体」, 工業材料, 56[1], 84–85 (2008). 5 (6) 碇屋隆雄, 榧木啓人, 「超臨界二酸化炭素を活用する二相系触媒反応」, 化学, 59[8], 68–69 (2004). (7) 井畑理, 榧木啓人, 碇屋隆雄, 「40 °C で溶解する機能性高分子 − 超臨界二酸化炭素 で合成、カプセル材料に適用も− 」, 工業材料, 52[8], 76–79 (2004). (8) 榧木啓人, 碇屋隆雄, 「グリーンケミストリーを指向した超臨界流体有機合成法」, 有 機合成化学協会誌, 61, 472–483 (2003). (9) T. Ikariya and Y. Kayaki, “Supercritical Fluids as Reaction Media for Molecular Catalysis”, Catal. Surv. Jpn., 4, 39–50 (2000). (10) 碇屋隆雄, 榧木啓人, 「超臨界 CO2 を利用した CO2 固定化」, 工業材料, 48[8], 64–68 (2000). (11) 榧木啓人, 山本明夫, 「触媒活性種モデルとしての有機パラジウム錯体の合成と反応 性」, 有機合成化学協会誌, 56, 96–106 (1998). 著 書 (1) 榧木啓人, 碇屋隆雄, 「低環境負荷有機合成の概要」, 新しい溶媒を用いた有機合成, 第1章,S&T 出版, pp. 1–8 (2013). (2) 榧木啓人, 碇屋隆雄, 「超臨界二酸化炭素を用いた二酸化炭素固定̶ 水素化反応」, 新 しい溶媒を用いた有機合成, 第2章第1節, S&T 出版, pp. 11–18 (2013). (3) 榧木啓人, 碇屋隆雄, 「超臨界二酸化炭素を用いた二酸化炭素固定̶ 付加反応」, 新 しい溶媒を用いた有機合成, 第2章第2節, S&T 出版, pp. 19–28 (2013). (4) 榧木啓人, 碇屋隆雄, 「超臨界二酸化炭素を溶媒に用いた溝呂木̶ Heck 反応」, 新し い溶媒を用いた有機合成, 第2章第5節, S&T 出版, pp. 48–55 (2013). (5) T. Ikariya and Y. Kayaki, “Rhodium, [N-[(1S,2S)-2-(Amino-κN)-1,2-diphenylethyl]- 4-methylbenzenesulfonamidato-κN]chloro[(1,2,3,4,5-η)-1,2,3,4,5-pentamethyl-2,4,-cyclopenta dien-1-yl ]-, Stereoisomer”, in e-EROS Encyclopedia of Reagents for Organic Synthesis, John Wiley&Sons, RN01400, (2012). DOI: 10.1002/047084289X.rn01400; Online ISBN: 978047084289 (6) 碇屋隆雄、榧木啓人,「グリーン反応媒体̶ 超臨界流体:二酸化炭素の固定化」, 最新 グリーンケミストリー 持続的社会のための化学, 御園生誠・村橋俊一編, 講談社, pp. 219–227 (2011). 6 (7) 榧木啓人, 「不斉水素化反応」,触媒調製ハンドブック, エヌ・ティー・エス, pp. 351-357 (2011). (8) 榧木啓人, 他共著, 「化学事典」, 斉藤隆夫監修, 旺文社(2010). (9) 榧木啓人, 碇屋隆雄, 「超臨界流体中における触媒反応」, 第 5 版 実験化学講座 25 触媒化学電気化学, 丸善, pp. 173–183 (2006). (10) Y. Kachi, Y. Kayaki, T. Tsukahara, T. Ikariya, and Y. Ikeda, “Kinetic Study on Exchange Reaction of Hexafluoroacetylacetonate in Bis(hexafluoroacetylacetonato)(dimethyl 19 sulfoxide)dioxouranium(VI) in Supercritical CO2 by F NMR”, in Recent Advances in Actinide Science, eds. by I. May, R. Alvares, and N. Bryan, RSC Publishing, pp.566–568 (2006). (11) T. Tsukahara, Y. Kachi, Y. Kayaki, T. Ikariya, and Y. Ikeda, “Solubility of UO2(β-diketonato)2DMSO Complexes (β-diketonate = acetylacetonate, trifluoroacetylacetonate, hexafluoroacetylacetonate; DMSO = dimethyl sulfoxide) in Supercritical CO2”, in Recent Advances in Actinide Science, eds. by I. May, R. Alvares, and N. Bryan, RSC Publishing, pp.563–565 (2006). (12) 榧木啓人, 碇屋隆雄, 「超臨界 CO2 を活用した有機合成反応の新展開」, 超臨界流体 の最新応用技術 環境保全・高分子加工・各種合成反応, エヌ・ティー・エス, pp. 21–43 (2004). (13) Y. Kayaki and A. Yamamoto, “1,1-Insertion into Metal-Carbon Bond”, in Fundamentals of Molecular Catalysis eds. by A. Yamamoto and H. Kurosawa, Elsevier, pp. 373–409 (2003). (14) T. Ikariya and Y. Kayaki, “Organic and Catalytic Reactions in Supercritical Carbon Dioxide”, in Supercritical Fluids-Molecular Interactions, Physical Properties, and New Applications, eds. by Y. Arai, T. Sako, and Y. Takebayashi, Splinger–Verlag, pp. 381–403 (2001). (15) 碇屋隆雄, 榧木啓人, 「超臨界二酸化炭素の利用技術」, 超臨界流体− 環境浄化とリ サイクル・高効率合成の展開− , 佐古猛編著, アグネ承風社, pp. 123–137 (2001). (16) 碇屋隆雄, 榧木啓人, 「超臨界媒体を使う有機合成」, 環境触媒とグリーンケミスト リー(普及版:環境にやさしい化学技術の開発、2006 年刊行), 御園生誠監修, シー エムシー, pp. 249–272 (2000). (17) 榧木啓人, 碇屋隆雄, 「超臨界二酸化炭素を用いる固定化技術」, CO2 固定化・隔離の 最新技術(普及版:CO2 固定化・隔離技術、2006 年刊行), 乾智行監修, シーエムシー, pp. 162–172 (1999). 7 特許 (1) 「触媒又は前駆体並びにこれらを利用した二酸化炭素の水素化方法及びギ酸塩の製造 方法」, 亘理龍, 榧木啓人, 平野伸一, 松本伯夫, 碇屋隆雄, 特願 2014-172384(平成 26 年 9 月 日出願) (2) 「1,3-ジアルキル-2-イミダゾリジノン類の製造方法」, 關 祐威, 小久保慶陽, 鈴木智 之, 榧木啓人, 碇屋隆雄, 市川真一郎, 特許第 5380051 号(平成 25 年 10 月 4 日登録) (3) 「α-アルキリデン-1,3-ジオキソラン-2-オン類の製造方法」, 榧木啓人, 碇屋隆雄, 特許 第 4368289 号(平成 21 年 9 月 4 日登録) (4) 「超臨界流体測定用フロー型NMRセルシステム」, 榧木啓人, 碇屋隆雄, 櫻井智司, 今成司, 特願 2003-397666・特開 2005-156447(平成 15 年 11 月 27 日出願・平成 17 年 6 月 16 日公開) (5) 「5-アルキリデン-2-オキサゾリジノン類の製造方法」, 榧木啓人, 碇屋隆雄, 特許第 4307103 号(平成 21 年 5 月 15 日登録) (6) 「2-オキサゾリジノン類の製造方法」, 榧木啓人, 碇屋隆雄, 特許第 4268424 号(平成 21 年 2 月 27 日登録) (7) 「ポリウレタン共重合体の製造方法」, 榧木啓人, 井畑理, 碇屋隆雄, 特許第 4056408 号(平成 19 年 12 月 21 日登録) (8) 「アリル化合物の製造方法」, 榧木啓人, 碇屋隆雄, 特許第 4104402 号(平成 20 年 4 月 4 日登録) (9) 「超臨界流体測定用NMRセル」, 榧木啓人, 碇屋隆雄, 今成司, 櫻井智司, 特許第 4313513 号(平成 21 年 5 月 22 日登録) (10) 「超臨界流体測定用NMRセル及び超臨界流体NMR測定装置」, 榧木啓人, 碇屋隆雄, 江口剛史, 今成司, 櫻井智司, 特許第 4342719 号(平成 21 年 7 月 17 日登録) (11) 「カルボニル化反応方法」, 碇屋隆雄, 榧木啓人, 特許第 3578667 号(平成 16 年 7 月 23 日登録) 8
© Copyright 2025