カー時空中での軌道角運動量 をもつ光の伝播 桝田 篤樹 大阪市立大学 共同研究者 石原秀樹(大阪市大) 木下俊一郎(大阪市大) ブラックホール磁気圏勉強会 軌道角運動量をもつ光 =光渦 =Twisted wave 目次 • Kerr時空でのTwisted • Twisted waveとその性質 waveの伝播 • まとめ Twisted waveとは i(kz+m t) e m=1 ˆ Lz z = i =m 軌道角運動量の固有状態 Twisted wave Max 0 m=1 amplitude 2π 0 phase About Twisted wave • 波数ベクトルがねじれている Twisted wave 角運動量を運ぶ • et al.: Optical vortices with starlight • References Twisted wave は渦構造をもっている G. Anz Lee, J. H., Foo, G., Johnson, E. G., & Swartzland Phys. Rev. Lett., 97, 053901 Twisted waveは実験室で実際に生成されている Allen,Mawet, L., Beijersbergen, M.Absil, W., Spreeuw, R. J.J.C., & Woerd D., Riaud, P., O., & Surdej, 2005, ApJ, 6 1995,Phys. Lett. 75, 826-829 J. P. 1992, Phys. Rev. A, 45, 8185 McAlister, H. A., Hartkopf, W. I., Sowell, J. R., Dombro Arecchi, O. F.G.T.,1989, Giacomelli, G., Ramazza, P. L., & Res AJ, 97, 510 Rev. Lett., 67, 3749 S. 1991, Phys. Molina-Terriza, G., Torres, J. P., & Torner, L. 2007, Natu Barbieri, C., Dravins, D., Occhipinti, T., et al. 2007, J. Mod. Op 近年、宇宙物理学の分野でも注目を集め始めている Nye, J. F., & Berry, M. V. 1974, Proc. R. Soc. London A, Bazhenov, V. Y., Vasnetsov, M. V., & Soskin, M. S. 1990, JETP , 191 Oemrawsingh, S. S. R., Eliel, E. R., Nienhuis, G., & W M. W., Coerwinkel, R. P. C., Kristensen, M., & Rev. Lett. 101, 100801 (2008) , 52, Phys. 429Beijersbergen, J. Opt. Soc. Am. A, 21, 2089 wave front m=-1 m=+2 m=0 m=+1 m=+3 具体的な解 Laguerre Gaussian beam w = w0 1 + 2 Bessel beam = 2 /w m 2 2 Lm 2 /w exp(im )(w0 /w) 0 exp[ 2 2 2z/kw0 ,R = z 1 + 2 2 kw0 /2z = Jm (q )exp[i( 分散関係 q = 2 2 1/w , = (m + 1)arctan 2z/kw02 2 ik/2R i ] t + kz)]exp(im ) 2 k 2 Bessel beam B = Jm (q iS S = )e q = 2 J3 ( ) 0.4 0.3 0.2 0.1 -0.1 -0.2 -0.3 t + kz + m 2 4 6 8 10 2 k 2 Production of twisted wave 1 input output Circularly liquid crystal Twisted wave Polarization ・Birefringence;refractive index depend on the polarization ・Refractive depend on site Propagation of twisted waves in a Gravitational field massless KG equation g µ µ =0 Propagation of hight frequency wave g g µ µ =0 µ µ (Ae i S ) 1 g 2 µ ( µ S)( S) = 0 k kµ = 0 µ ハミルトン=ヤコビ 方程式 µ wave vector Orbit of Bessel beam in flat :Bessel beam solution (exact solution with wave equation in flat spacetime) B = Jm (q )e iS uµ = =( u ¯µ = t + kz + m µS J. Opt. A: Pure Appl. Opt. 10 (2008) 035005 , 0, m, k) uµ dS ′′ ′ ′ r φ + 2r φ = 0, u ¯µ M V Berry and K T Mc uniquely defined at each point. P (r ) depends nonlinearly on ψ(r ), so the superposition of trajectories is different from the trajectories of the superposition. In vacuum or any homogeneous medium, the geometrical rays are straight lines. This is an immediate consequence of Snell’s law (or, more abstractly, Hamilton’s equations), according to which rays bend only if there is a variation of refractive index. The straightness is not immediately obvious from the algebraic formulae describing the rays, but will be confirmed by showing that they satisfy the following equations, expressing the vanishing of the curvature |r ′ × r ′′ |/|r ′ |: 1 dS =( S= ′′ ′2 r − r φ = 0. (1.4) By contrast, the trajectories of the exact Poynting vector are usually curved. For the beams we study here, it turns out, unexpectedly, to be easier to calculate the exact Poynting trajectories than the geometrical rays, which require knowledge of the asymptotics of Bessel and Laguerre functions. , 0, 0, k) y 0 -1 2π z π 0 1 -1 0 x 1 wave vector of Bessel beam in flat spacetime uµ = u ¯µ + vµ u ¯µ u ¯ µ ¯ µu vµ transverse plane =0 Bessel beam in a curved spacetime gµ = +hµ µ iS +i Jm (q )e S Orbit uµ u ¯µ+ u ¯= 1 dS 1 uµ dS + dS µ S uµ dS Perturbation equation Ansatz ( µ ¯µ )(¯ ¯ )= h )(¯ u+ u u + u µ 1 µ ¯ ¯ H = g kµ k 2 q + hµ u ¯µ v 2 1 µ h u ¯µ v = 2 1 2 q 2 Perturbation equation 1 µ ¯ ¯ 1 2 µ H = g kµ k h u ¯µ v = q 2 2 Differentiation µ ¯ k ¯ k = µ µ h µ u ¯µ v How does twisted wave propagate around Kerr B.H? µ ¯ k ¯ µk = µ h 13 u ¯µ v perturbative metric of Kerr ds = 2 (1 M = r 2 )dt + 2 Ai dx dt + 2 i ij dx i dx j 2M a Ai = 2 ( y, x, 0) r M:mass of black hole a:Kerr parameter Scaleの比較 時空の曲率半径 >> ビームの局在スケール >> ビームの波長 Beam周りでの展開 hµ u ¯µ v hµ |XB hµ x = 1 = 4 hµ + x xB ) u ¯µ v xB XB u ¯µ v (XB = x xB Ai xj 1 = Bg · l 4 µ ¯ k (x Aj xi i vj (XB xB ) j i XB v ) XB 1 ¯ µk = 4 (Bg · l) Bgの配位 l Bg 重力場中の運動方程式 u µ u = 0 µ 1 + 4 (Bg · l) 弱重力 dv = dt +v 1 Bg + (Bg · l) 4 Orbit of twisted wave on the equatorial plane of Black hole propagation of parallel to axis of black hole z y x y x ¯µ k 1 ¯ µk = 2 (Bg · l) Propagation of parallel to axis of black hole z y x y x attracting force! Torward black hole on equator z y z x y Tangential on the equatorial plane z z y x y x acting interaction term not SUMMARY • Kerrブラックホールの周りのTwisted wave の軌道が満た方程式を得た ¯µ k 1 ¯ µk = 2 (Bg · l) • 相互作用項は外部磁場と磁気モーメント相互作用 • 求まった方程式はa=0では測地線方程式になる • 外力は 1 4 r Future Work • 測地線とのずれからKerr時空の情報を得る • 偏光情報を含めての光の軌道を考える • Twisted waveのB.Hシャドー Propagation of wave Plane wave Eikonal approximation Geodesic equation Twisted wave ? Eikonal approximation Production of twisted wave 2 ref NaturePhysics 7, 195-197 input Circularly Polarization output Twisted wave It is known that there is analogy between Maxwell equation in medium and curved spacetime Perturbative approach 他の角運動量-角運動量相互 作用との比較 バイナリー連星の相互作用 ポストニュートン 円偏光平面波とKerr アイコナール近似の高精度 外力の働く向 きは一致 すべて遠方では 1 r4 で効く Perturbation equation Ansatz Wave equation in flat spacetime source term Perturbation equation u ¯ u ¯µ + µ µ ( u ¯µ ) u + µ u ¯µ 1 u = 2 (h u ¯µ u ¯ )+ µ (h u ¯µ v ) µ averaging around axis of beam µ ( u ¯µ ) u ¯ + = µ u ¯µ u 1 µ 1 h u ¯µ u ¯ + 2 S h u ¯µ v dS µ Perturbation equation µ ( u ¯µ ) u ¯ + µ u 1 µ 1 h u ¯µ u ¯ + 2 S = u ¯ u ¯µ ¯ µu µ + =0 h u ¯µ v dS µ equation of orbit of zero order motion equation of the beam k µ 1 µk = 2 1 (h kµ k ) + S µ kµ = u ¯µ + u ¯µ h u ¯µ v dS µ interaction term of Kerr metric and twisted wave u ¯µ vµ uµ µ( t + kz) µ (m µ S ) u ¯µ vµ uµ µ( t + kz) µ (m µ S )
© Copyright 2025