エンタルピーの計算 dH = T ∂P ∂T ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ dV + CV T dT

itlrouY;7
/%XEitlroug P-­‐V-­‐T ?Hc+_dB/%(4"g1DS;7OdX
>Y:DbEXxH = f (V, T) UOdB/%(4"YKIxP = f (V, T) Y?'#gdMUID
YTB
⎫
⎧⎛ ∂P ⎞
C
⎛ ∂P ⎞
dH = T ⎨⎜
dV + V dT ⎬ + VdP = T ⎜
dV + CV dT + VdP
⎟
⎝ ∂T ⎟⎠ V
T
⎩⎝ ∂T ⎠ V
⎭
P-­‐V-­‐T ?Y.XGDSZx-! T gUNSxgFQYqr5g+
_dvDfadx6-8g+_dwBT yUOdUx
⎫
⎧⎛ ∂P ⎞
CV
⎛ ∂P ⎞
dH = T ⎨⎜
dT ⎬ + VdP = T ⎜
dV + VdP
⎟⎠ dV +
⎝
⎝ ∂T ⎟⎠ V
T
⎩ ∂T V
⎭
*YXZxPV = ZRT TCdHcxVdP = −PdV + RTdZ
NQIRSx
⎧
⎛ ∂P ⎞ ⎫
dH = − ⎨ P − T ⎜
dV + RTdZ
⎝ ∂T ⎟⎠ V ⎬⎭
⎩
R
⎛ ∂P ⎞
= , Z =1
⎝ ∂T ⎟⎠ V V
0$*Yg@dH* UOe[x⎜
TCdHcx
dH ∗ = 0
"Y
gRSx0$*Y/% (V = ∞)@Hcx*Y/% (V = V) ]T5OdU
Vm ⎡
⎛ ∂P ⎞ ⎤
H m∗ − H m = ∫ ⎢ P − T ⎜
⎟⎠ ⎥ dVm − RT ( Z − 1)
∞
⎝
∂T
Vm ⎦
⎣
<YMUgitlrou
U\BMY<Y5YXxF[@vdW/%(4"W
Vge=^MUTx32,YitlrouI;7T+_cedYTCdB
itnsouY;7
U)XNSx/%XEitnsoug P-­‐V-­‐T ?Hc+_dB
C
⎛ ∂P ⎞
dS = ⎜
dV + V dT
⎝ ∂T ⎟⎠ V
T
⎡
⎤
⎛ ∂P ⎞
∴ ⎢ dS = ⎜
dV ⎥
⎟
⎝ ∂T ⎠ V
⎣
⎦T
0$*Yg@dS* UOe[x
R
⎛ ∂P ⎞
dS ∗ = ⎜
dV =
dVm
⎟
⎝ ∂T ⎠ V
Vm
"Y
gRSx0$*Y/% (V = ∞)@Hcx*Y/% (V = V) ]T5OdU
Vm ⎡ R
⎛ ∂P ⎞ ⎤
Sm∗ − Sm = ∫ ⎢ − ⎜
⎟⎠ ⎥ dVm
∞
⎝
V
∂T
Vm ⎦
m
⎣
pjkmhu'Y;7
ln φ = ln
f
1
=
P RT
∫ (V
P
m
0
− Vm∗ ) dP
MY`x;7X/%(4"g1DdMUg9FSx5'g V X&OdB
PVm = ZRT TCdHcxdP = −
*YXZx
ln φ = ln
f
1
=
P RT
∫ (V
P
0
m
− Vm∗ ) dP =
1
RT
∫
P
0
P
RT
dVm +
dZ NQIRSx
Vm
Vm
⎡
P
RT ⎞ ⎤
∗ ⎛
dZ ⎟ ⎥
⎢(Vm − Vm ) ⎜ − dVm +
Vm
⎝ Vm
⎠⎦
⎣
P : 0 → P YUJXxVm : ∞ → Vm, Z : 1 → Z TCdHcx
1
RT
1
RT
∫
Z
1
∫
Vm
∞
⎡
1
P ⎞⎤
∗ ⎛
⎢(Vm − Vm ) ⎜ − ⎟ ⎥ dVm =
RT
⎝ Vm ⎠ ⎦
⎣
(Vm − Vm∗ )
∴ln φ = ln
∫
Vm
∞
⎡ PVm∗
⎤
1
⎢ V ∗ − P ⎥ dVm = RT
⎣
⎦
∫
Vm
∞
⎡ RT
⎤
⎢⎣ V ∗ − P ⎥⎦ dVm
Z⎛
Z⎛
Z⎛
RT
V∗ ⎞
RT P ⎞
1⎞
dZ = ∫ ⎜ 1− m ⎟ dZ = ∫ ⎜ 1−
dZ = ∫ ⎜ 1− ⎟ dZ = Z − 1− ln Z
⎟
1 ⎝
1 ⎝
1 ⎝
Vm
Vm ⎠
ZRT P ⎠
Z⎠
f
1
=
P RT
∫ (V
P
0
m
− Vm∗ ) dP =
1
RT
∫
Vm
∞
⎡ RT
⎤
⎢⎣ V ∗ − P ⎥⎦ dVm + Z − 1− ln Z
A/%(4"UNSxSRKA"g1DSxpjkmhu'Y;7"gPbB
A-! 473.15 K, 10 MPa XGLd N2, H2, NH3 Ypjkmhu'g SRK "g1DS;7PbB
TC [ K ]
PC [ MPa ]
ω
N2
126.2 3.39
0.039
H2
33.0
1.29
-­‐0.216
NH3
405.5
11.35
0.250