基盤研究(B) すばるHSC観測と宇宙再電離 大規模シミュレーションによる電離度マップの描画 On the correction for the intergalactic attenuation of the direct Lyman continuum observation Akio K. INOUE (Osaka Sangyo University) 1 Lyman Continuum Leakage and Cosmic Reionization @ Stockholm 2014/8/15 基盤研究(B) すばるHSC観測と宇宙再電離 大規模シミュレーションによる電離度マップの描画 Before the IGM issue… MD46 “LyC” substructure VLT/ISAAC 15 hours on-source exposure Neither [OIII] nor Hβ line <1e-17 cgs (3-sig) 2 Data reduction by K. Murakawa Lyman Continuum Leakage and Cosmic Reionization @ Stockholm 2014/8/15 基盤研究(B) すばるHSC観測と宇宙再電離 大規模シミュレーションによる電離度マップの描画 But, we have confirmed! SSA22a- Nakajima et al. in preparation F336W/F814W=0.3 (0.8” aperture) 3 Lyman Continuum Leakage and Cosmic Reionization @ Stockholm 2014/8/15 基盤研究(B) すばるHSC観測と宇宙再電離 大規模シミュレーションによる電離度マップの描画 Contents Basics Observed LyC flux to escape fraction Intergalactic LyC attenuation Examples of previous works Monte Carlo simulation of IG attenuation Procedure Absorber statistics update Redshift dependence of the attenuation Subaru/Suprime-Cam NB359 attenuation For a specific line-of-sight? Summary 4 Contents Lyman Continuum Leakage and Cosmic Reionization @ Stockholm 2014/8/15 基盤研究(B) すばるHSC観測と宇宙再電離 大規模シミュレーションによる電離度マップの描画 Observed LyC to escape fraction E.g., Inoue et al. 2005, A&A, 435, 471 Definition of “LyC escape fraction”: “Relative” escape fraction by Steidel et al. (2001): Observable? IGM attenuation: LyC is affected by IGM but UV(~1500A) not, then, Spectral model assumption 5 Direct observations Lyman Continuum Leakage and Cosmic Reionization @ Stockholm Not observable Basics 2014/8/15 基盤研究(B) すばるHSC観測と宇宙再電離 大規模シミュレーションによる電離度マップの描画 Intergalactic LyC attenuation E.g., Inoue & Iwata 2008, MNRAS, 387, 1681 IGM effective optical depth: Single cloud optical depth IGM cloud distribution function For a power law column density distribution: 𝑑𝜏eff /𝑑𝑑 𝑁u (arbitrary unit) Most of IGM 𝜏eff comes from 𝜏cl ~1 − 10 absorbers. For LyC attenuation, rare Lyman limit systems (log10 (𝑁HI /cm−2 ) > 17.2) are the main contributor. Stochastic attenuation 6 𝜏cl = 1 10 NHI slope 𝛽 = −1.5 Single IGM cloud optical depth Lyman Continuum Leakage and Cosmic Reionization @ Stockholm Basics 2014/8/15 基盤研究(B) すばるHSC観測と宇宙再電離 大規模シミュレーションによる電離度マップの描画 Examples of previous works Steidel et al. (2001) A mean correction derived from a QSO composite spectrum Shapley et al. (2006); Nestor et al. (2011, 2013) A Monte Carlo simulation based on the Madau (1995) absorber function (see also Bershady et al. 1999) Siana et al. (2007, 2010) A Monte Carlo simulation based on an updated absorber function Iwata et al. (2009) A Monte Carlo simulation based on the absorber function updated by Inoue & Iwata (2008) Vanzella et al. (2010) A Monte Carlo simulation based on the absorber function updated by Inoue et al. (2011) Mostardri et al. (2013) A Monte Carlo simulation based on the absorber function measured by Rudie et al. (2013) 7 Basics Lyman Continuum Leakage and Cosmic Reionization @ Stockholm 2014/8/15 基盤研究(B) すばるHSC観測と宇宙再電離 大規模シミュレーションによる電離度マップの描画 Contents Basics Observed LyC flux to escape fraction Intergalactic LyC attenuation Examples of previous works Monte Carlo simulation of IG attenuation Procedure Absorber statistics update Redshift dependence of the attenuation Subaru/Suprime-Cam NB359 attenuation For a specific line-of-sight? Summary 8 Contents Lyman Continuum Leakage and Cosmic Reionization @ Stockholm 2014/8/15 基盤研究(B) すばるHSC観測と宇宙再電離 大規模シミュレーションによる電離度マップの描画 Procedure E.g., Inoue & Iwata 2008, MNRAS, 387, 1681 z, NHI, b z, NHI, b z, NHI, b Randomly generate absorbers along a simulated line-of- sight based on a distribution function assumed: 𝜕3𝑁 = 𝑓 𝑧 𝑔 𝑁HI ℎ(𝑏) 𝜕𝑧𝜕𝑁HI 𝜕𝑏 Heart of the model Calculate optical depth spectra toward supposed objects along the line-of-sight Repeat the process for a large number of lines-of-sight. Caveat: No correlation among absorbers and objects 9 Monte Carlo simulation of IG attenuation Lyman Continuum Leakage and Cosmic Reionization @ Stockholm 2014/8/15 基盤研究(B) すばるHSC観測と宇宙再電離 大規模シミュレーションによる電離度マップの描画 Absorber statistics update (1) Inoue et al. 2014, MNRAS, 442, 1805; Inoue & Iwata in preparation Column density distribution z=6.5 z=4.5 z=2.5 z=0.5 z=6.5 z=4.5 z=2.5 z=0.5 z=6.5 z=4.5 z=2.5 z=0.5 10 Monte Carlo simulation of IG attenuation Lyman Continuum Leakage and Cosmic Reionization @ Stockholm 2014/8/15 基盤研究(B) すばるHSC観測と宇宙再電離 大規模シミュレーションによる電離度マップの描画 Absorber statistics update (2) Inoue et al. 2014, MNRAS, 442, 1805; Inoue & Iwata in preparation Redshift distribution + This work * Inoue & Iwata (2008) x Madau (1995) LAF LLS DLA 11 N_LLS(M95) > N_LLS(II08) > N_LLS(New) ≈ observations at z<3 N_LLS(II08) > N_LLS(M95) > N_LLS(New) ≈ observations at 3<z<4 Monte Carlo simulation of IG attenuation Lyman Continuum Leakage and Cosmic Reionization @ Stockholm 2014/8/15 基盤研究(B) すばるHSC観測と宇宙再電離 大規模シミュレーションによる電離度マップの描画 Absorber statistics update (3) Inoue et al. 2014, MNRAS, 442, 1805; Inoue & Iwata in preparation Lyα transmission E.g., Becker et al. (2013) Median (solid line) and 68% range (shaded) 12 Monte Carlo simulation of IG attenuation Lyman Continuum Leakage and Cosmic Reionization @ Stockholm 2014/8/15 基盤研究(B) すばるHSC観測と宇宙再電離 大規模シミュレーションによる電離度マップの描画 Absorber statistics update (4) Inoue et al. 2014, MNRAS, 442, 1805; Inoue & Iwata in preparation Lyman limit mean-free-path 100 LoSs composite: Median (solid line) and 68% range (shaded) O’Meara+11 Fumagalli+13 Prochaska+09 Rudie+13 Worseck+14 Shorter MFP Larger LyC attenuation 13 Monte Carlo simulation of IG attenuation Lyman Continuum Leakage and Cosmic Reionization @ Stockholm 2014/8/15 基盤研究(B) すばるHSC観測と宇宙再電離 大規模シミュレーションによる電離度マップの描画 Redshift dependence of the attenuation Median (line) and 68% range (shaded) Inoue & Iwata in preparation IGM LyC transmission Large fluctuation Asymmetric distribution New > II08 > M95 at 1<z<4 Chance to have 20% LyC transmission at z~5 in the new model 14 Monte Carlo simulation of IG attenuation Lyman Continuum Leakage and Cosmic Reionization @ Stockholm 2014/8/15 基盤研究(B) すばるHSC観測と宇宙再電離 大規模シミュレーションによる電離度マップの描画 Subaru/S-Cam NB359 attenuation Inoue & Iwata in preparation NB359 z=3.1 16% 50% 84% New 0.47 0.74 3.04 Madau 1995 0.95 x2 difference 1.59 3.80 Inoue & Iwata ’08 0.59 1.13 4.61 Inoue et al. 2011 0.41 0.62 2.57 [mag] 15 Monte Carlo simulation of IG attenuation Lyman Continuum Leakage and Cosmic Reionization @ Stockholm 2014/8/15 基盤研究(B) すばるHSC観測と宇宙再電離 大規模シミュレーションによる電離度マップの描画 Contents Basics Observed LyC flux to escape fraction Intergalactic LyC attenuation Examples of previous works Monte Carlo simulation of IG attenuation Procedure Absorber statistics update Redshift dependence of the attenuation Subaru/Suprime-Cam NB359 attenuation For a specific line-of-sight? Summary 16 Contents Lyman Continuum Leakage and Cosmic Reionization @ Stockholm 2014/8/15 基盤研究(B) すばるHSC観測と宇宙再電離 大規模シミュレーションによる電離度マップの描画 Lyα transmission fluctuation for SSA22 Inoue et al. in preparation Composite of LBGs behind the z=3.1 proto-cluster Enhanced Lyα absorption in the proto-cluster Larger absorbers’ density around galaxies? Blue contour: z=3.1 LAE density Green symbols: z=3.1 LBGs Red cross: z=3.1 IGM probed LoSs (LBGs at 3.2<z<3.8) 17 For a specific line-of-sight? Lyman Continuum Leakage and Cosmic Reionization @ Stockholm 2014/8/15 基盤研究(B) すばるHSC観測と宇宙再電離 大規模シミュレーションによる電離度マップの描画 Effect of enhanced density of absorbers Inoue & Iwata in preparation Fluctuation of Lyα transmission fluctuation of absorbers’ number density NB359 z=3.1 16% 50% 84% General LoS 0.47 0.74 3.04 SSA22 LoS 0.50 0.1 mag increase 0.83 4.19 [mag] 18 For a specific line-of-sight? Lyman Continuum Leakage and Cosmic Reionization @ Stockholm 2014/8/15 基盤研究(B) すばるHSC観測と宇宙再電離 大規模シミュレーションによる電離度マップの描画 Summary To derive LyC escape fraction (or emissivity) of galaxies from direct observations, we have to correct the IGM attenuation against LyC. The correction based on a Monte Carlo simulation requires to assume an absorber distribution function. Some distribution functions had been assumed in literature and the resultant median LyC attenuation varies from 0.6 mag to 1.6 mag at z~3. Madau (1995) model seems to give an overcorrection at z~3. Number density of absorbers may be enhanced around galaxies, but its effect may be as small as 0.1 mag in the median LyC attenuation. If we have a large enough number of spectra of objects further than the redshift observed in LyC, the attenuation tailored for the specific line-of-sight can be obtained. 19 Summary Lyman Continuum Leakage and Cosmic Reionization @ Stockholm 2014/8/15 基盤研究(B) すばるHSC観測と宇宙再電離 大規模シミュレーションによる電離度マップの描画 Available IGM transmission spectra 10,000 lines-of-sight for objects at z=0.1 to 7.0 with dz of 0.1 New model New model special for SSA22 Inoue et al. (2011) model Inoue & Iwata (2008) model Madau (1995) model Tell me, if you need. 20 Summary Lyman Continuum Leakage and Cosmic Reionization @ Stockholm 2014/8/15
© Copyright 2025