Fundamentals in Nuclear Physics (Kenichi ISHIKAWA) for internal use only (Univ. of Tokyo) 2014/5/8 Fundamentals in Nuclear Physics 原子核基礎 Kenichi Ishikawa (石川顕一) http://ishiken.free.fr/english/lecture.html [email protected] 5/8 1 Fundamentals in Nuclear Physics (Kenichi ISHIKAWA) for internal use only (Univ. of Tokyo) Elements of • Special Relativity • Quantum Mechanics 特殊相対性理理論論 量量⼦子⼒力力学 Material will be downloadable from: http://ishiken.free.fr/english/lecture.html 5/8 2 Fundamentals in Nuclear Physics (Kenichi ISHIKAWA) for internal use only (Univ. of Tokyo) Special relativity 特殊相対性理理論論 1905 5/8 3 Fundamentals in Nuclear Physics (Kenichi ISHIKAWA) for internal use only (Univ. of Tokyo) Special relativity is derived from two principles. ① Special Principle of Relativity 特殊相対性原理理 Physical laws should be the same in every inertial frame of reference. 慣性系 ② Principle of Invariant Light Speed 光速度度不不変の原理理 There is at least one inertial frame of reference where Maxwell’s equations hold. 5/8 4 Fundamentals in Nuclear Physics (Kenichi ISHIKAWA) for internal use only (Univ. of Tokyo) Maxwell’s equations 1864年 ∇·D=ρ ∇·B=0 ∂B =0 ∇×E+ ∂t ∇×H=J 1 ∂2E 2 − ∇ E=0 2 2 c ∂t 1 in vacuum c= p 真空中 ✏ 0 µ0 vacuum velocity of light is uniquely derived from Maxwell’s equations 5/8 5 Fundamentals in Nuclear Physics (Kenichi ISHIKAWA) for internal use only (Univ. of Tokyo) Special relativity is derived from two principles. ① Special Principle of Relativity 特殊相対性原理理 Physical laws should be the same in every inertial frame of reference. 慣性系 ② Principle of Invariant Light Speed 光速度度不不変の原理理 There is at least one inertial frame of reference where Maxwell’s equations hold. light in vacuum propagates with the speed c in one inertial frame of reference, regardless of the state of motion of the light source. 5/8 6 Fundamentals in Nuclear Physics (Kenichi ISHIKAWA) for internal use only (Univ. of Tokyo) Special relativity is derived from two principles. ① Special Principle of Relativity 特殊相対性原理理 Physical laws should be the same in every inertial frame of reference. 慣性系 ② Principle of Invariant Light Speed 光速度度不不変の原理理 There is at least one inertial frame of reference where Maxwell’s equations hold. light in vacuum propagates with the speed c in any inertial frame of reference, regardless of the state of motion of the light source. 5/8 7 Fundamentals in Nuclear Physics (Kenichi ISHIKAWA) for internal use only (Univ. of Tokyo) Relativity is used in nuclear physics primarily through the expressions for the energy and momentum of a free particle 運動量量 rest mass energy momentum 静⽌止質量量 E= p mc2 1 p= p 1 =p 1 1 velocity m 2 v 2 /c2 mv v 2 /c2 速度度 v = mc2 = M c2 = mv = M v = v/c 5/8 8 Fundamentals in Nuclear Physics (Kenichi ISHIKAWA) for internal use only (Univ. of Tokyo) rest mass energy 静⽌止質量量 E= p velocity m mc2 v 2 /c2 1 速度度 v = mc2 = M c2 non-relativistic limit v ⌧ c usually applies for nuclei 1 E ⇡ mc + mv 2 2 2 • Mass is a form of energy nuclear energy 5/8 9 Fundamentals in Nuclear Physics (Kenichi ISHIKAWA) for internal use only (Univ. of Tokyo) 5/8 10 Fundamentals in Nuclear Physics (Kenichi ISHIKAWA) for internal use only (Univ. of Tokyo) rest mass energy 静⽌止質量量 E= p velocity m mc2 v 2 /c2 1 速度度 v = mc2 = M c2 non-relativistic limit v ⌧ c usually applies for nuclei 1 E ⇡ mc + mv 2 2 2 • • Mass is a form of energy The faster the particle is, the larger its observed mass is The kinetic energy 運動エネルギー is also observed as a part of the (observed) mass 5/8 11 Fundamentals in Nuclear Physics (Kenichi ISHIKAWA) for internal use only (Univ. of Tokyo) rest mass energy 静⽌止質量量 E= p velocity m mc2 1 v 2 /c2 速度度 v = mc2 = M c2 Any form of energy is observed as mass. 5/8 12 Fundamentals in Nuclear Physics (Kenichi ISHIKAWA) for internal use only (Univ. of Tokyo) energy E = p 1 mc2 v 2 /c2 E 2 = m2 c 4 + p 2 c 2 momentum p = p 1 v pc = c E mv v 2 /c2 nuclei: non-relativistic limit v ⌧ c 2 p E ⇡ mc2 + 2m p ⇡ mv ⌧p neutrinos and ✓photons: mc ◆ 2 2 m c E ⇡ pc 1 + 2p2 especially for photons: m = 0 E = pc ✓ v⇡c 1 2 2 m c 2p2 ◆ v=c 5/8 13 Fundamentals in Nuclear Physics (Kenichi ISHIKAWA) for internal use only (Univ. of Tokyo) For two particles A and B EA EB c2 pA · pB is independent of inertial frames of reference (Lorentz invariant) ローレンツ不不変量量 Especially E2 c 2 p 2 = m2 c 4 5/8 14 Fundamentals in Nuclear Physics (Kenichi ISHIKAWA) for internal use only (Univ. of Tokyo) Decay find A!B+C B A C mC , pC mA , p A mB , pB pB , pC Energy conservation EA = EB + EC Momentum conservation pA = pB + pC In the rest frame of A pB = pA = 0 mA c 2 = q pC p2 c2 + m2B c4 + q p2 c2 + m2C c4 not easy to solve ... 5/8 15 Fundamentals in Nuclear Physics (Kenichi ISHIKAWA) for internal use only (Univ. of Tokyo) EC = E A 2 EC EB pC = pA c2 p2C = (EA pB EB ) 2 m2C c4 = m2A c4 + m2B c4 c2 (pA pB )2 2(EA EB c2 pA · pB ) Lorentz invariant can be evaluated with a convenient inertial frame of reference In the rest frame of A m2C c4 = m2A c4 + m2B c4 p2 = "✓ m2A + m2B 2mA 2mA c2 m2C q m2B c4 + p2 c2 ◆2 # m2B c2 5/8 16 Fundamentals in Nuclear Physics (Kenichi ISHIKAWA) for internal use only (Univ. of Tokyo) Elements of Quantum Mechanics 17 5/8 Fundamentals in Nuclear Physics (Kenichi ISHIKAWA) for internal use only (Univ. of Tokyo) Wave-particle duality to the Schrödinger equation 粒粒⼦子波動⼆二重性 plane wave ei(k·r シュレーディンガー⽅方程式 t) 平⾯面波 p = k, E= h = 1.055 10 34 J · s reduced Planck constant = 2 Planck constant プランク定数 h = 6.626 10 34 J · s how to extract p and E from p (x, t) = i E (x, t) = i x t (x, t) = ei(kx t) (x, t) (x, t) pˆ = i x ? ˆ=i , E In quantum mechanics, a physical quantity is represented by an operator (or matrix) in general. t 5/8 18 Fundamentals in Nuclear Physics (Kenichi ISHIKAWA) for internal use only (Univ. of Tokyo) p2 E= + V (x) 2m kinetic energy i potential energy 運動エネルギー i pˆ = x ˆ=i , E ポテンシャルエネルギー (x, t) = t t 波動関数 2 wave function 2 2m x2 + V (x) (x, t) the time-dependent Schrödinger equation (1D) 時間に依存するシュレーディンガー⽅方程式 3D i t (r, t) = 2 2m 2 + V (x) (r, t) | (x, t)|2 or | (r, t)|2 interpreted as probability density to find the particle at x 5/8 19 Fundamentals in Nuclear Physics (Kenichi ISHIKAWA) for internal use only (Univ. of Tokyo) Solution with energy (x, t) = (x)e E= i t 2 d2 + V (x) (x) = E (x) 2 2m dx the (time-independent) Schrödinger equation (1D) E : energy eigenvalue エネルギー固有値 波動関数 wave function d continuous functions (x) and dx 連続関数 5/8 20 Fundamentals in Nuclear Physics (Kenichi ISHIKAWA) for internal use only (Univ. of Tokyo) Free particle d2 2mE + 2 2 dx ⾃自由粒粒⼦子 V (x) = 0 平⾯面波 plane wave (x) = eikx , (x) = 0 k= e ikx e ikx 2mE 2 eikx x general solution (x) = A eikx + B e (x, t) = A ei(kx t) ikx + B ei( kx t) 5/8 21 Fundamentals in Nuclear Physics (Kenichi ISHIKAWA) for internal use only (Univ. of Tokyo) Barrier potential ① reflection 反射 e incident 入射 ② ikx k E= < V0 2m 1 = eikx + Ae eikx transmission 透過 x = a (a > 0) 100 % reflection in classical mechanics ikx 2 = BeKx + Ce K= 2m(V0 transmission coefficient T = |D| = E)/ Kx 古典力学では100%反射される 3 = Deikx 2 透過係数 1 2 d continuous , dx eikx V0 x=0 2 2 ③ 1+ V02 4E(V0 E) sinh2 Ka 5/8 22 Fundamentals in Nuclear Physics (Kenichi ISHIKAWA) for internal use only (Univ. of Tokyo) E= 2 2 k < V0 2m 100 % reflection in classical mechanics transmission coefficient T = |D| = 透過係数 1 2 1+ V02 4E(V0 E) sinh x = 2 sinh Ka transmission is nonzero in quantum mechanics mV0 a2 2 e x 2 トンネル効果 important in alpha decay 1.0 0.20 ex tunneling effect 量子力学では透過がある T 古典力学では100%反射される =8 E/V0 = 0.8 0.8 0.15 0.6 0.10 0.4 0.05 0.2 0.2 0.4 0.6 0.8 1.0 E/V0 0 1 2 3 4 5 mV0 6 a 5/8 23 Fundamentals in Nuclear Physics (Kenichi ISHIKAWA) for internal use only (Univ. of Tokyo) Parity パリティ(偶奇性) 2 if d2 + V (x) (x) = E (x) 2 2m dx ¯(x) = ( x) satisfies V (x) = V ( x) d2 ¯ ¯(x) = E ¯(x) + V (x) 2m dx2 2 in the absence of degeneracy ¯(x) = P (x) (x) = P 2 (x) P=1 P = -1 縮退がなければ |P | = 1 P = ±1 ( x) = (x) ( x) = even or + parity 偶(+)のパリティ (x) odd or - parity 奇(−)のパリティ Nuclear states can be assigned a definite parity, even or odd. Important in the discussion of beta decay 5/8 24 Fundamentals in Nuclear Physics (Kenichi ISHIKAWA) for internal use only (Univ. of Tokyo) Angular momentum L=r 角運動量 p Lx = p Ly = r O In the spherical coordinate Lz = ✓ @ i~ y @z ✓ @ i~ z @x ✓ @ i~ x @y ◆ @ z @y ◆ @ x @z ◆ @ y @x 極座標では Lx = i (sin Ly = i ( cos Lz = L = 2 2 + cos tan + sin tan ) ) i 1 sin sin 1 + sin2 2 2 5/8 25 Fundamentals in Nuclear Physics (Kenichi ISHIKAWA) for internal use only (Univ. of Tokyo) commutation relation 交換関係 [L2 , Lx ] = [L2 , Ly ] = [L2 , Lz ] = 0 [Lx , Ly ] = i Lz [Ly , Lz ] = i Lx [Lz , Lx ] = i Ly Ylm ( , ) common eigenfunction of L2 and Lz spherical harmonics 固有関数 球面調和関数 L2 Ylm ( , ) = 2 l(l + 1)Ylm ( , ) lz Ylm ( , ) = m Ylm ( , ) m= l = 0, 1, 2, 3, · · · l, l + 1, · · · , l 1, l (2l+1) eigenfunctions for given l (2l+1) 個の固有状態 examples Y00 = 1 4 Y10 = 3 cos 4 Y1,±1 = 3 sin e±i 8 5/8 26 Fundamentals in Nuclear Physics (Kenichi ISHIKAWA) for internal use only (Univ. of Tokyo) how about spin? Let’s use the commutation relation [Lx , Ly ] = i Lz [Ly , Lz ] = i Lx [Lz , Lx ] = i Ly as a definition of angular momentum (operator) L = (Lx , Ly , Lz ) L=r forget p p r O For given l, there are (2l+1) eigenfunctions 行列 (eigenvectors) (2l + 1) (2l + 1) matrix 固有ベクトル 5/8 27 Fundamentals in Nuclear Physics (Kenichi ISHIKAWA) for internal use only (Univ. of Tokyo) l=1 l l 1 l Lz 1 0 0 0 0 0 2 ··· 0 0 1 l+1 l L+ = Lx + iLy L = Lx iLy 0 0 0 ··· 0 0 0 2l · 1 0 0 ··· 0 1 · 2l 0 0 ··· 0 0 0 2 · (2l 0 ··· 0 0 0 0 (2l 0 ··· 0 1) · 2 0 0 3 · (2l ··· 0 0 1) 0 0 0 (2l 2) · 3 ··· 0 ··· ··· 2) · · · ··· ··· ··· ··· ··· ··· ··· ··· ··· 0 0 0 0 ··· 1 · 2l 0 0 0 ··· 2l · 1 0 0 0 0 0 ··· 0 0 0 0 0 2 0 2 0 0 0 2 0 0 0 0 0 2 0 5/8 28 Fundamentals in Nuclear Physics (Kenichi ISHIKAWA) for internal use only (Univ. of Tokyo) Let’s consider 2×2 matrices? Lz 1 0 2 0 1 Lx eigenvalues = ± L 2 21 2 1 +1 2 Pauli matrices x = 0 1 1 0 2 0 2 0 0 L 2 0 1 1 0 Ly 2 0 i spin 1 2 particle L+ 2 1 0 0 1 l= 2 1 2 0 0 2 0 i 0 パウリ行列 y = 0 i i 0 z = 1 0 0 1 5/8 29
© Copyright 2024