Title Author(s) On the Kähler-Ricci flow on projective CalabiYau varieties with log terminal singularities Kawamura, Masaya Citation Issue Date URL 2013-03-25 http://hdl.handle.net/10748/6229 DOI Rights Type Textversion Thesis or Dissertation publisher http://www.tmu.ac.jp/ 首都大学東京 機関リポジトリ 修・士学位論文 δハ^包仁舳レー幻、、1ル 題名 舳、附加舳一い舳伽 州4机ハl/才1ル1掌 ■狙) 炉㍗㌻タダ㌣㍗1 指導教授 uvイイ教授 平成オ年/月〆目 提出 首都大学東京大学院 理工学研究科教鋤菰術専攻 学修番号/〃8ψ 氏名 Pつ幻〆 学位論文要旨(修士 (理学)) 論文著者名 川村 昌也 論文題名:On the K読h1er−Ricci且。w on projective Ca1abi−Yau varieties with1og termina1singu1arities (邦題):対数的末端特異点を持つ射影的カラビ・ヤウ多様体上の ケーラー・リッチブロウについて (英文) 概要 本論文の目的は、標準因子が数値的に自明な射影的代数多様体上でケーラー・リッ チブロウの収束を考察すること、そして射影的代数多様体上のケーラー・リッチブロ ウに沿うスカラー曲率の挙動を調べることにある。まずはじめに、ティアン、ソン両 氏による予想の申の一つを紹介する。可逆層0pN(1)と超平面東0cpN(1)は同一視で きるのでこの同一視に従って滑らかな射影的代数多様体Pw上の(1,1)形式で複素射 影空間CPN上のフビニ・ストウディー計量に対応するものを同祥にPw上のフビニ・ ストウディー計量と呼ぶことにする。以下X。。g…X\X.i.gとする。 予想1Xを対数的末端特異点を持つ射影的カラビ・ヤウ代数多様体、L:X→Pwを 射影的埋め込みとする。ωoをX上の実学正値開(1,1)形式で、X、、g上で正かつ滑ら かとし、またPN上のフビニ・ストウディー計量の↓による引き戻しにX上同値であ るとする。このとき弱ケーラー・リッチブロウの一意解ω(亡)は亡→ooとしたとさ、 [ωo]の申で一意的に定まる特異カラビ・ヤウ計量にグロモフ・ハウスドルフの意味で 収束する。 カラビ対称条件を用いて問題を簡単化することで次の補題を得た。 補題1Xを対数的末端特異点を持つ射影的カラビ・ヤウ代数多様体、ム:X→PNを 射影的埋め込みとする。このときLによるPw上のフビニ・ストウ.ディー計量の引き 戻しム*ω冊は。1(ム*0pw(1))の中で一意的に定まる特異カラビ・ヤウ計量である。 この補題を用いることで次の定理が得られた。 定理1Xを対数的末端特異点を持つ射影的カラビ・ヤウ代数多様体とし、実学正値 開(111)初期形式ωo∈c1(ム*0pN(1))をと乱ωoはX・・g上で正かつ滑ら†で卒乱こ のとき弱ケーラー・リッチブロウ 細(亡)一一助(ω(亡)) ・n[0,・・)・X。。。,’ { ω(0,・)=ωo on X , は【O,oo)×X上で一意解ω(亡,.)を持ち、この解はω∈0o。([O,○o)x X。、g)かつ、す べての寸∈[O,oo)に対してポテンシャル関数ψ(古ジ)∈P8H(X,ωo)∩工00(X)を持つ。 そして。1(L*0pw(1))の中で一意的に定まる特異カラビ・ヤウ計量ム*ωF8にグロモフ・ ハウスドルフの意味で収束する。 これにより初期形式に対する特別な仮定の下で、予想1に対して肯定的な結果を 例示したと言える。 次に弱ケーラー・リッチブロウの一意解のスカラー曲率に関する結果を述べる。 1 定理2Xを対数的末端特異点を持っ射影的カラビ・ヤウ代数多様体とする。ω(古,・)を X上の実学正値開(1,1)形式でX、、g上で正かつ滑らか、射影的埋め込みム:X→Pw によるPW上のフビニ・ストウディー計量の引き戻しにX上同値なω0を初期値に持 つ弱ケーラー・リッチブロウの一意解とする。このとき任意のδ>0に対して正の定 数0が存在してX。。g上で任意の尤>δに科して次の評価を満たすj η 0 0 −7≦8(ω(ち・))≦丁・戸 ここで3(ω(古,.))はωのスカラー曲率である。従ってこのスカラー曲率は左→ooと したとき、X、、g上0o。の位相で0に一様収束する。 スカラー曲率は、X、、gでのザリスキー位相による開集合上で定義されていること に注意する。これは既にクレパントな特異点の解消を持つ場合に示されているが、対 数的末端特異点を持つという更に弱い仮定の下でも同じ結果が得られることを示し た。これは更に一般的な仮定の下で成り立つことが分かった。 定理3Xを対数的末端特異点を持つ正規Q分解的な射影的代数多様体とする。Hを X上の豊富なQ因子としτ≡sup{吉>0.H+オKxはネフ}と定義する。あるρ>1 に対してωo∈κH,ρ(X)であるとすると亡∈[0,T)に対してωoを初期値に持つ弱ケー ラー・リッチブロウの一意解が存在する。更に任意のδ>0に対してある定数0>0 が存在してX、、g上任意のT>亡〉δに対して η 0 0 て≦8(ω(ち・))≦丁・戸 が成り立つ。 この定理により、標準因子がネフであると仮定したとき次の収束に関する結果を得た。 系1定理3の仮定に加えて、X上の標準因子Kxはネフであるとしたとき左∈[O,oc) に対してωoを初期値に持つ弱ケーラー・リッチブロウの一意解が存在し二そのスカ ラー曲率は古→ooとすると、X干。g上0o。の倖相でOに一様収束する。 以上の議論の方法と結果を組み合わせることで次の結果が得られた。 定理4Xを対数的末端特異点を持つ正規Q分解的な射影的代数多様体、L:X→Pw を射影的埋め込みとする。π:X’→Xを特異点の解消とする。もし標準因子Kxが ネフかつ巨大であるとすると、このときムによるフビニ・ストウディー計量の引き戻 し乙*ω冊のスカラー曲率はX、、g上で0となる。 各証明の概略:補題1の証明ではまずカラビ対称条件を用いるために射影的代数多様 体の滑らかな点全体X,eg上のP1一東を考え、これがX,egにグロモフ・ハウスドルフ の意味でケーラー・リッチブロウに沿って収束することを示す。収束し、退化した計 量を初期計量として、ケーラー・リッチブロウが再開されることを確認する。そして この計量が特異カラビ・ヤウ計量にX、、g上収束するので、曲率の収束の計算によっ て特異カラビ・ヤウ計量とフビニ・ストウディー計量の引き戻しが一致することを証 明する。定理2の証明では、滑らかな双有理モデルから特異点の解消の例外集合を除 いた集合に含まれる任意のコンパクト集合を考え、その上に制限したカラビ・ヤウ体 積要素を考え、それを用いたモンジュ・アンペールブロウを考察する。放物型シャウ ダー評価を援用すると、各コンパクト集合上0o。一ノルムでの解の一様有界性が得られ るので、コンパクト集合による取りつくし列を考え、各集合上で収束する対角線上の 収束部分列を取り収束させることで、例外集合を除いたところ全体でスカラー曲率の 評価を得る。同様の方法により定理3が示され系1、定理4が順に得られる。 On the Kまh1er−Ricci且。w on projgctive Ca1abi−Yまu varieties with1og termina1singu1arities Masaya−Kawamura 1 Contents 3 1 Introduction 2 2.1 Projective Ga1abi−Ya.u varieties and−some other d−e丘nitions 7 2.2 Ana1ytica1method for studying on a1gebraic varieties 16 21 2.3 Ga1abi symmetry conditon..............、 3 7 Preユimin肛ies Convergem.ceresu1t undertheK註h1er−Ri㏄i且。winthe Gromov−HauSdor旺 24 SenSe 24 3.1 Convergence in the Gromov−Hausd−or丘sense 3.3 Convergence resu1t as a metric space 25 34 The weak K童h1eトRicci且。w on projective Ca1abi−Yau variety 36 4.1 Surgery for the K或h1eトRicci且。w 36 39 3,2 Some estimates for七he proof of Proposition3.1 4.2 Some estimates for the proof of Proposition4.ユ 4.3 Gonvergence to the so1ution of th−e degenerate 4.4 Proof of Proposition4.1 。.... 55 59 Exemp1i丘。ation of an欄rmati〉e resu1t for Co軸ec七ure1.1 62 5.1 Quick summary ofthe previous sections 62 63 64 Monge−Ampさre equation 5 5.2 Proof of Lemma1.1 5.3 Proof of Theorem1.1 6 Expand.ed−resu1t ofthe estimate for the sca1ar curvature wit耳a crepant resO1u七ion 66 6.1 Estimate for the sca1ar curvature−of the so1ution of七he perturbed lMonge− Ampさre iow. 66 6.2 P止。of of Theorem!.2 72 7 Estimate for the sca1趾。urvature on norma1Q−factoria1projective vari− eties with1og termina1si耳gu1arities 73 7.1 Pre1i卿inaries for Theorem1.3 73 7.2 Smoothing property of1Monge−Ampさre且。ws with the initiaI da.ta in P8ル on c1osed−K地1er manifo1d−s. 74 7,3 Ana1ogous arguments of Proposit三〇n4,1with the initia1metric1量es in jD8∬∩(ブ。o 81 7,4 GeneraIized resu1t of Proposition7・4with the initia1data in P8島 84 7.5 App1ication of Proposition7.5to projective varieties with1og temina1sin− gu1arities. 91 7.6 Proof of Theorem1.3and Coro11ary1.1 100 7.7 Proof of Theorem1.4 101 1 Introduction The Ricci且。w on Riemann manifo1d−s,whi(:h w鵬丘rst1y introduced−by R.S,Hami1ton [Ha1,who was strong1y inspired by J,Ee11s and−J.H,Sampson’s work on Harmonic map heat且。w(Which is actuany used to show the miqueness of the short time so1ution of the Ri㏄i且。W,This much simp1er皿ethod.comp砒ed−with陣a]is ca11ed.DeTurck,s trick [De],[AH].),in ord−er to study on the deformation of metrics about thirty years ago,is the evoユution equation be1ow: Let(M,go)be a compact Riemannian manifo1d. ∂ 一9(む)=一2肋(9(む)),9(0)=9o. ∂t The fami1y of Riemamian metrics on M:{g(む)}士∈p,T)satis丘es the partia1d−i丘erentia1 equation above is ca.11ed−Ri㏄i且。w.This equation sudden1y became worユd fa二mous after G. Pere1man proved the Poincar6aエ1d Geometrization conjecture by comp1eting Ha血i1tonラs programwiththe ideaca11edsu平gery.Add−itiona11y,we shou1d−mention the Brend−1e−Schoen− D雌erentia』1Sphere Theore=m was so1ved−with using the equa.tion[A呵,[Br]. In this paper,we study on the K気h1er−Ricci量。w,which主s its ana1ogue in Kまh1er geometry.H、一D.Cao[Cao1studied the且。w in deep irst1y and−so1ved−the prob1em of the existence of Ricci且at K註h工er metrics on a compact K註h1er manifo1d with vanishing the irst Ghem c1ass with some techniques of the K託h1er−Ri㏄i且。w.This probrem is re1ated to mirror symmetry and−such manifo1ds named Ga1abi−Yau manifo1d−s have been stud−ied− in a1ot of丘e1d−s of mathematics and physics. Especiauy,we阜hou1d−1ook at the re1ation between the且。w a.nd a1gebra.ic geometry. The re1ationship has been d−eve1oping dramatica11y fast recent1y.To take a血examp1e, G.Tian and−J.Song[ST21,[ST31have been stud−ying on the anaIytic minima1mode1 program.The mi血ima1㎜ode1program is the we11−known program in a1gebraic geometrγ h order to con−s虹uct a.minima1mode1,we id−ent欺subsets in an a.1gebraic variety and need tg co11apse them.If we consid−er a contraction map aIgebraica11y,it corresponds with so1ving a」simu1taneous no血一1inear a1gebraic equation sinc6an a1gebraic variety is de丘ned by a simu1taneous po1ynomia1system,In the case of the ana1ytic program,the program proceeds under the Kまh1er−Ri㏄i且。w.In this regard,we can easiIy expect that the re1ation of two is going to be much more stronger in the days包head. Our interest re1ated to this丘e1d is tha.t how and when the unnQrma1ized weak K註h1er− Ri㏄i且。w converges to a,unique singu1ar Ca1abi−Yau metric on a projective Ca1abi−Yau variety with its canonica1d−ivisor is numericauy trivia1.H.一D.Cao showed the且。w con− yerges inσ。。一topo1ogy ifX is smooth[Cao].J.Song and Y.Yuan proved−that it converges in weak sense if X has1og terminaI singu1arities[SY11.In this paper,we丘rst1y try to unders申nd what kind of metrics can be tbe singuユar Ca1abi−Ya廿metric on a speci丘。 o㏄asion.For simpIifying the situation,we use the condition ca11ed−Ca1abi symmetric cond−ition[Ca11.This gives us an e丘ective expression that a given metric satisfying the cond−ition on a」projective va.riety can be written by the pu11−back of Fubini−Study metric and a potentia1function.In this way,we can study on the prob1em much easier and we wi11see the pu11−backed Fubini−Study metric can be regarded as a CaIabi−Yau metric under these circumstances.With using these resu1ts,we can exeInp1ify an a舐rmative 3 resu1t for a conjecture which wiu be intrqduced−1ater.The second−aim of this paper is to investigate the behavior of the sca1ar curvature a1ong K託h1er−Ricci且。w on a.projective variety with1og termina1singu1arities.Z.Zhang showed the sca1ar curvature of the soIu− tion of norma・1ized−K曲1ρr−Ricci且。w on a projective manifo1d−with nef a.nd big ca・nonica・1 (iivisor h&s a・uniform.boun4in1Zh41,In[Zh61,we can丘nd the resu1t tha・t if the且。w on a projective manifo1d d.eve1ops its singu1arity at a丘nite time T,th−en the scaIar cur− vature b1ows up at most of rate(T−t)一2und−er assuming the initia1K註h1er c1ass Iies in∬111(X,C)∩∬2(X,Q)一G,Tian and J.Song proved that on a K易h1er manifo1d with semi−amp1e canonica1divisor,the sca1ar curvature of the smooth g1oba1so1ution of the mnorma1izea K益h1er−Ri㏄i畳。w h&s a bound0(1+あ)一1and it converges to O as芭→oo [ST41.J.Song a.nd Y.Yua.n studied on the behavior on a projective Ca1abi−Yau variety with crepant singu1肌ities in[SY11,not1og te㎜ina1.We wi11con丘m that曲eir resu1t can be expanded to more genera1one,In[ST3],we caI1畳nd that a simi1ar argument can be done on a norma1Q−factoria1projective variety with1og termina1singu1ar玉ties.The d舐erence between this pa.per a.nd[ST31is that we obta.ined more speciic upper bound for the sca1ar curvature and this resu1t te11s us that the sca1ar curvature converges to O as亡→oo on a norma1Q−factoria1projective variety with nef canonica1divisor.More− over,with using the same method in the proof of Lemma1.1,we showed that the sca1ar curvature of the puu−back of Fubin三一Study metric is equ&ユto O on the set composed−of a11 smooth points in the projective variety with its canonica1d−ivisor is nef and big. Here w6mention the one of conjectures in[ST3],a」nd we wiu show an a舐r㎜ative 舳swer for the conjecture in Theorem1.1. Conjecture1.1.([ST31)Let X be a projective Ca.1abi−Yau variety with1og termina1 singu1arities andム:X仁→1PN be a projective embedd−ing of X.Letωo』a rea1semi− positive c1osed(1,1)一form on X,positive and−smooth oh X、、g,equiva1ent to the pu11−back of the Fubini−Study metric byム。n X.Tben the unn0Hna1ized weak K註h1er−Ricci且。w ∂ω 一二一助(ω) ∂t converges to the unique singu1ar’Ga1abi−Yau metric in[ωo]in{he Gromov−Hausdor丘sense aS t→OO, Remark1.1.Sinとe we can identifythe invertibIe sheafOpw(1)onthesmooth projective variety FN wi曲the hyperp1ane bund1e Oc炉w(ユ)over the associated mε㎜ifo1d CPN,we identify Fubini−StudymetricωF8∈c1(0cpw(1))with an associated smoothpositivec1osed わrm in c五(0pw(1)).In this paper,we ca11the associated form a1so Fubini−Stud−ymetric on Pw,Wemayconsiderthe丘rst Chemc1悶sofaninvertib1esheafaswe−wi11seeinthenext section.The pun−backedおrmム*ω珊∈c1(ム*0酬(1))is a semi−positive cIosed(1,1)一form, which is positive and smooth on X、、g:=X\X.i㎎. A c1osed semi−Positive(1,1)一formωis caI1ed−a singuIar CaIabi−Yau metric on a pro− jective Ca1abi−Yau v航iety X ifωis a smooth positive c1osed一(1,1)一form away from a sub−variety亙⊂X and−satis丘es〃。(ω)=0away from亙. The(1,1)一formωo is equiva1ent to,乙*ωF8means that there exists0〉O such that 1 一ム*ωF3≦ω0≦α*ωF8. o 4 Our main resu1ts are as fo11ows: Lemma1.1.Let X be a projective Ca1abi−Y測variety with1og temina1singu1arities andム:X」》PM be a project玉ve embedding ofX.Then the pu11−back ofthe Fubini−Study metric on PN by the embedding is the unique singu1ar Ca1abi−Yau metric三n the c1ass c1(ム*0pN(1)). Remark1.2.ム*0pw(1)is ca11ed an inverse image of Opw(1)by the embedding乙,which is an invertib1e sheaf of Ox−modu1es. Theorem1.1.Let X be a projective CaIaもi−Y;au variety with Iog terminaI sin−gu1ariti♀s with the initia1c1osed semi−positive(1,1)一f0Hnωo∈c1(乙*0砕(1)),which is positive and smooth−on X。。g and gquiva1ent to the pu11−back of the Fubini−Study metric byム。n X. Then the wea.k K註h1er−Ricci旦。w: ∂ { ・n[O,・・)×X、、。, 誘ω(乏)=一冊(ω(τ)) ω(0,・)=ωo on X, bas a unique so1utionω(尤,.)on[0,○o)×X,which sa.tisiesω∈00c([O,oc)×X、、g)and has a potentia1functionψ(之,.)∈P8∬(X,ωo)∩工。。(X)for t∈[0,○o).Furthermore ω(右)converges to the unique singu1ar Ca1abi−Yau metricム*ω珊in c1(ム*0帥(1))in the Gromov−Hausd−or任sense as左→oo. 士heorem1.2.Let X be a− 垂窒盾鰍?モ狽奄魔?@Ca1abi−Yau variety with1og termina1singu1arities. Letω(広,・)be the unique so1u乍ion of the K義h1er−Ri㏄i且。w starting with a rea1smooth semi−positive c1osed(1,1)一formωo on X,equiva1ent to the pu11−back of the Pdbini−Study metric by the emb6dd−ing乙:X」>一1Pw. Then for anyδ>0,there exists0>0such that 几 1 0 0 1≦8(ω(ち・))≦丁・戸・・X…f・・剛・δ1 where8(ω(之,。))is the sca1ar curvature ofω.Therefore七he sca1ar curvature converges to zero uniform1y in Ooo−topo1ogy on X、、g as t一ト。o・ Remark1.3.The sca1ar curvature8is de丘ned on a Zariski open set of X。、g. Actua11y,the resu1t of Theorem1.2can be gene五a1ized natura11y. Theorem1.3.Let X be a norma1Q−factoria1projective varieties with1og termina1 singu1arities.Let H be an amp1e Q−divisor on X and− T≡・up{f>01H+肌xi・n・f}. Ifωo∈κH,ρ(X)for some p>1,then tb−ere exおts a unique so1utionωof the weak K邑h1er−Ricci且。w for t∈[0,T). Moreover,£or anyδ>・0,there exists0>0such that η 0 0 一≦8(ω(ち.))≦7㌣onX…fo「an・T>之>δ, where8(ω(左,・))is the sca1ar curv&ture ofω・ 5 Theore皿L3teI1s us that we obtain a1so the convergence resu1t of the sca1ar curvature if the canonica1divisor is nef. Coro11ary1・1・Let X be a norma1Q・factoriaI projective varieties with1og termina1 singu1arities.Let H be an amp1e Q−divisor on X and T…・up{¢>Ol∬十山xi・n・f}。 Ifωo∈κ:H,ρ(X)for some p>1and the canonica1divisor Kx is nef,then there exists a unique so1utionωof the weak K註h1er−Ri㏄i且。w for之∈[0,oo)、Furthermore,its sca1ar curvature5(ω(尤,・))uniform1y converges to zero in Ooo−topo1ogy on X、、g asカ→oo. By combining some arguments used−for these c王aims above and some resu1ts,we can conc1u(1e as fo11ows: Theorem1.4.Let X be a norma1Q−factoria1‘projective varieties with1og temina1 ・ingu1・・iti・…dム:X→Pwb・・p・・j・・ti…mb・dding・fX.L・tπ:X!→Xb・ a reso1ution of singu1arities,Assume that the canonica1d−ivisor Kx is nef and−big on X.Then tb−e sca1ar curyature of the pu11−back of th−e Fubini−Study metric on Pw by the e血bedding is equa1to zero on X、、g. In the proof of Theorem1.1,we趾st consider a P1−bund1e over X、、g and−show the Pしb・・d1・・・・…g・…X、、g・i・・g・h・K註h1・トki・・i且・wi・・h・G・・m・・一H…d・・任・・… W・・・・・…1imi・i・。・・。・・…t・・・…i・・・…i・i・i・i血…i・.…岬・・・・・・・・・・…; I伯h1er−Ri㏄i且。w can.be restarted by the method−ca11ed surgery and the metric converges to the singu1ar Ca1abi−Yau metric.If we add.itiona11y assume the ini七ia1血e七ric satisies C邑1abi symmetry cond−ition,then the pu11−back of Fubini−Study metric ma七。hes with the singu1ar CaIabi−Yau metric.In the proofofTheoremユ.2,we consider an arbitrary chosen co皿pact set inc1uded−in a smgoth biration−a1mode1outside the exceptiona11ocus of the 臨。1ution of singu1arities.We construct a Ca1abi−Yau vo1ume form on曲むhむ。mpact set which is used−for studying on the Monge−Ampさre且。w associated to the k邑h1er−Ricci 且。w.Withusingtheparabo1ic Schauderesti血ate,weobtain auniform0◎。一bbuhdofthe so1ution on each compact set and−we℃onsider the exhaustion by compact sets and may choosethediagona1sub−sequencewhichと。nverges oneach compact set.Thenthe estimate for the sca.1ar curvature can be obtained on who1e variety outside the exceptiona11ocus. In a simi1ar mamer,we can prove Theorem1.3and.then we gain the resu1t of Coro11ary 1.1and Theorem1.4in ord−er. 6 2 Pre1iminaries 2.1.Projective Ca1abi−Yau varieties and.some other d.e丘nitions 工n this section,we give some d−e丘nitions. They a」re standard−d−e丘nitions in aIgebraic geometry and commutative ringtheory[G珂,阻ar],[Ka1],[Ko],[SW3]. We de丘ne anorma1projectivevariety.First1y,1etλbe aring,andwe de丘ne Specλ三 {A11prime id−ea1s ofλ}・An e1ement in Specλis ca11ed−a point of Specλ.We de丘ne a Zariski topo1ogy£or SpecA For an arbitrary given idea1∫ofλ,we de丘neγ(∫)三 和∈Spec刈∫⊂担},which sa尤is丘es the弧iom of c玉。se(i set:γ(1):⑦,γ(0)二Specλ, γ(〃)=γ(∫)Uγ(J)f・・…th・・id・・1Jラγ(Σ乞∫卜∩1γ(ム)・L・ψ(∫)三Sp・・λ\γ(∫)・ F・・α∈λ,σ(α)三Sp・・λ\γ(α)二{ρ∈Sp・・刈α帥}i…n・d・b・・1・・p・…b・・t, which satis丘esσ(∫)=∪、∈∫ひ(α).This means tha七basic open subsets become bases for an open set of Specλ. For each Zariski open setひ⊂Specλ,we de丘ne λ(σ) ¥㍗陸劣〃∴llll(・)一1/ ,which becomes Aa1gebra natura11y一λis the structure sheaf of Specλ、Where we put 8≡λ\卓・・dへ…8−1λd…t・・七h・1…1i・・ti・・dfλby・p・im・id・・1p.Th・p・i・ (Specλ,λ)isca.11edana舐nescheme.Apointp∈Spec■4isca11ed」agenericpointof a c1osed−sub−scheme Spec(λ/ρ)1f伽}:γ(ρ)={q∈Spec刈p⊂q},where{担}1s the c1osure of the set.(Actua11y,{や}=γ(ρ)is a1ways rea1ized for a ring A)亭∈Specλis ca11ed a c1osed−point if{p}=如},which correspond−s to that担is a maxim−a1id−ea1ofλ. Ifλis£nite1y generated on C,(Specλ,λ)is ca11ed.an a1gebra.ic a舐ne scheme.Let C[”1={cれが十…十。1”十。oicη,・.・,co∈C}be apo1ynom早aI ringon C・IfSpecλis an aIge− braic a舐ne scheme,then there exists ana勺ura1number肌1such that A皇q”1,、..,軌、]/∫1 forsomeid−eaI∫10fq”!ゾ..,”η、1.This gives us Sp㏄λ⊂A肌1:SpecC1”1,_,zη11.There exists an〇七herη2such thatλ皇q”1ゾ.、,”η、]/∫2for some id−ea1∫20f C[∬1ゾ.、,軌、]一A1so we have Specλ⊂A肌2.This te11s us that Specλis determined by on1yλ,d−oes not d−e− pend on the㎡五ne space Aη.Let Specλ’ b?@an a.1gebraic a駈ne sche皿e.Then we have an expressionλ皇q”1ゾ..;”η]/∫for some id−ea1∫of C[”!,.一一,軌]、There遣。re we have {A11c1osed points6f Specλ}: {A1I maxima1ideaIs ofλ} = {A11maxima1idea1s of C[”1ゾ..,”η1/∫} 一{P∈Cψ(ρ):0f…11ん∈∫}≠②、 That not becoming an empty set is given by the fact th−at C is,it goes without saying,an a1gebraica11y−c1osed丘e1d.(Hi1bert’s Nu11ste11ensa.tz) Ifλis丘nite1y generated−on C and integra1d−omain,(Specλ,λ)is caued an a田ne a.1gebraic variety and the quotient丘e1d.ofλis c&11ed the rationa1function丘e1d of Specλ, which is written as C(Specλ). 7 Let a pa・ir(X,0x)be a五〇ca1−ringed space.If there exists an open neighborhood−0; for each pointρ∈X such that(叫,0xlσ、)is isomorphic to an a舐ne sche岬e(Specλ,λ), then(X,0x)is ca11ed a scheme and Ox is ca11ed−the structure sheaf of X. Let8be an another scheme.Ifthere exists a morphism from the scheme X to3,then X is ca11ed a3_schen1e. Let X be a SpecC−scheme−Since SpecC={(0)}(one point),X is covered with a 丘・it…mb…f・p・…t・ひ・1−1=ひ肌・Th・p・i・(X10・)i…11・d…1g・b・・i…h・m・li£ each structure㎜orphism(σ{,0x.σ、)→SpecC is isomorphic to an aIgebraic a舐ne sclheme (Specλ,λ).An a1gebraic scheme X on C is de丘ned by a.1gebraic equations with coe駈。ient in C. Let(X,0x)be an n−dimensiona1a1geもraic scheme.A functionん:X→Al is ca11ed hoIomorphic at a pointρ∈X if there exist a・n open neighborhood0らand po1ynomia1s ∫,9∈C[工・,…コ小・・h・h・tgi…wh・・・・・…叫・・dん一書・叫・W・…th・・んi・ ho1omorphic on X if it is ho1omorphic at every point of X. Since the category of rings and.the category of a伍ne schemes are equiva1ent,for a scheme X and aringλ,morphisms X→Specλandhomomorphismsλ→F(X,0x)have one to one correspondence each other.From the equiva1ence,we can obtain the resu1t that for a SpecC−scheme X,ho1omorphic functions8∈F(X,0x)and−ho1omorphic functions X→Al have one to one correspondence each other.This gives us the isomorph−ism Ox,ρ皇A1for each p∈X. Since{Aエ1c1osed points of Specλ}≠②for an a}gebraic a伍ne scheme Specλand there exists a neighborhood一町for each pointρ∈X such that叫皇Specλ,there a1ways exists at1east one c1osed point of X near each pointρ.This gives us that we may consider on1y c1osed−Points as points in X in many cases. In genera1,if we ass早me that3is scheme,and X,γare8−scheme,then there exists the丘ber prod−uct X×8γ.Therefore if X is SpecC−scheme,we may consider the丘ber product X×sp、、c X・ X・。。、c.X4X 1・・ I ↓1 X 一→SpecC ∫ And we donsider amorphis血△x/sp。。c:X→X×sp。。cX,which is unique1y determined−by universa1mappingpropertyofthe£berprod−uct,sothe morphism satis丘esρrlo△x/sp,cc= 〃2o△x/sp。。c Fωx.△x/sp。。c is caned the diagona1morphism of X.If the diagona1 morphism is an isomorphic morphism to a c1osed sub−scheme in X×sp,cc X,X is ca11ed separated(This condition is equivalent to the Hausdor任。ondition for manifo1ds.)、 Atopo1ogica1spaceXisreducib1eifitisexpressedasX=X1∪X2withtwoc1osed subsets in X.If it is not reducib1e,it is caI1ed−irreducib1e−Let(X,0x)be a scheme. (X,0x)is ca.11ed reduced if for each pointρ∈X,a sta1k Ox,p,wh耳。h is a1oca1ring,does not have any ni1potent e1ements. Dc丘nition2.1.If SpecC−scheme(X,0x)is irreducib1e,red−uced and separated,and if each morphism(σ壱,0xlσ、)→SpecC(乞=1ゾ..,m)is isomorphic to an a1gebraic a伍ne scheme(Specλ,λ),then it is ca11ed−an a1gebraic variety・ Any a。舐ne open setσ≠②of an a1gebraic variety X is an a飼ne a1gebraic va.riety and− its ra.tiona.1function丘e1d−C(ひ)does not d−epend−onひ.The rationa.1function丘e1d ofX is de丘ned by C(X)≡C(ひ). Letλbe asub−ringofaring3.λisintegrauyc1osed inB ifforeverymonicpo1ynomia1 ∫with coe舐。ient inλ,qvery root’of∫be1onging to B a1so be1ongs toλ.We sayλis a nρrmahing if aIi integra1domainλis in尤egra11y c1osed−in its qu〇七ient丘e1d一. De丘nition2・2・Let(X,0x)be ascheme・Wesay’(X,0x)is norma1ifa1oca1ring Ox,ρ is a norma1ring for any pointρ∈X, Aring月isca11edagradedringifR。。。Σ二{∈z兄,where払isasub−Abe1iangroup, sa.tis丘es兄ユ.凧。⊂兄ユ十{。.Then Ro⊂R is a sub−ring and R is an Ro−a1gebra.Moreover, R is caned a ring with non−negative grading if代コ0for{<0,An e1ement of兄is ca1ed a homogeneous e1ement of degree4−An idea1of R is caued a homogeneous idea1if it is genera七ed by homogeneous e1ements of the same d−egree or di丘erent d−egrees− We de趾e Proj月which is caued the homogeneous spectrum ofa ring月.For arbitrary chosen ring with non−negative grading R、,Proj月、is d−eined to be Proj月…{a11homogeneous prime id−ea1s not inc1ud−ing R+}⊂Spec月 wh…R・≡Σ{。。札 Since Cko,.、、,”wl is regarded as a ring with non−negative grading− A projective space is de丘ned−as fo11ows: 1PN≡ProjC[”o,...,”w]一⊂SpecCkoゾ..,”w1=Aw+1, The space PN becomes.a smooth a1gebraic variety and.the sheaf of grad.ed Opw−modu1e Opw(肌)becomes an invertib1e sheaf for any m∈石,where0ぴis the structure sheaf of pN. Weneedtodeineac1osedsub−schemeforthenextde丘nition.Let(X,0x)and(γ,0γ) be schemes.If we say(∫,∫):X→γis a morphism between two schemes,then it is de丘ned as a皿。rphism betweentwo1oca1−ringed spaces,whiψmeans that i七is amorphism between two ringed−spaces and a map ofsta.1ksプ∫(ρ):0X∫(p)→0x,ρfor each pointρ一∈X is a1oca1ho皿。morphism. Letエbe a qua.si−coherent idea1sheaf of Ox. The quotient sheaf Ox/エis gen− erated by the image ofψe g1obaI section1,especia11y since which is of丘nite type, Z…Supp(0x/エ)二{ρ∈XI(0x/エ)ρ≠O}is c1osed.Its structure sheaf Oz is d−e丘ned by the pu11−back of Ox/エ.The1oca1−ringed space(Z,0z)is ca11ed−a c1osed−sub−scheme de丘ned by工If a morphism of schemesん:X→γg三ves an isomorphism to a c1osed sub−scheme d.eined.by a quasi−coherent idea1sheaf of0γ,then it is ca11ed a c1osed em− bedding.A c1osed embedding(∫,∫):(X,0x)→(γ,0γ)satis丘es as fouows:プ:X→γ is injective and・a c1osed map・∫:0γ→∫・0x of sheaves onγis surjec声ive,where∫・0x is the direct image of Ox by∫whiとh wi11be de丘ned1ater. De丘nition2・3・Let(X,0x)be an an a1gebraic variety・X is caエ1ed a projective variety ifthere exists an embeddingゲX→Pw as a c1osed sub−scheme.We ca11the embedding a projective embedd−ing. Let(X,0x)be an肌一dimensiona1a1gebraic variety.A d−imension of a variety is deter− mined by maxpεxdimOx,ρ.We say a pointρ∈X is a smooth point if the ass㏄iated 1oca1ring Ox,ρis regu1ar・X is ca11ed−smooth if a1110ca1rings Ox,ρare regu1ar for each ρ∈X.A1oca1ring Ox,ρis regu1ar mean−s that the unique1y determined maxima1id−ea1肌ρ is generated by a sequence ofη一e16ments{z1ゾ..,z、}ca11ed a regu1ar pa戦meter system, whereη:dimOx,ρ.Ifa1oca1ring Ox,ρis not regu1ar at a poinけ∈X,then we sayρis a singu1ar point.The set composed of an singu1ar points in X is written X.i.g.If X is nor− maI,then X,i㎎is a c1osed−set in X and its co−dimension is more than1(codimX,i㎎≧2). The set composed−of a1I smooth points in an a1gebraic variety X is written X。。g,which is an open set and not empty in X.When X is a smoothη一dimensi㎝a1a1gebraic variety, for anyρ∈X,a m狐ima1idea1帆ρof Ox,ρis generated by regu1ar parameter system {z1,_,z肌}。Then,there exists a su舐。iently sma11open neighborhood叫such that au z壱 (乞二1,_,η)are expand−ed to e1ements of r(σρ,0x)、If it is need−ed一,we choose叫to be much more sma11er,and then.for any cIosed point q∈叫,the maximaI id−ea1mg ofOx,g is generated by{z1−z1(q)ゾ、.,z肌一zη(q)}.Then,{z1,一.、,z肌}is ca11ed a1oca1coor(1inate SySteIn On0,・ Let X be an作d−imensiona1smooth a1gebraic varie七y,Let F⊂」X be a c1osed−subset. The subset F is ca11ed a simp1e norma1crossing divisor if for eachρ∈F,there exist a regu1ar parameter system{z1,_,zη}of a1oca五ring Ox,ρand an integer0≦r≦ηsuch that an equation of F is expressed by z1_一命=0in an open neighborhood ofρ.Then, each irreducibユe component of F b㏄omcs a smooth sub−variety whose co−dimension is1. Let X be an n−d−imensiona1smooth a1geb士aic variety.Since X is separated,the diago− na1morphism△x/sp、、c:X→X×sp。、cX is c1osed embedding・This means that theimage △x/・。ec・(X)i・・1…d・ub一…i・tyi・X×・。。。・X・ndp・・j・・ti・n・ρ・パX・・。。。・X→X (4・=1,2)induces an isomorphism△x/sp、、c(X)竺X(This is because the morphism △x/sp,cc satis丘esργ’1o△x/specc=ρr2◎△x/specc=〃x・)・ Letエbe an id・ea1sheaf of Ox×、、、、、x朋sociated−t〇七he image△x/sp。。c(X).Since X is smooth,we血ay choose 1oca1coordinate system{z1,_,z肌}around−a c1osed−pointρ∈X.Then,we can re− 9・・d{ρ中ユ,...,バ・、,ρ伽,..。,ρ・奏・、}・・1…1・…di・・t・・y・t・m・・…d・・1…dp・i・t (ρ,ρ)∈X×。。、、・X・・dth・id・・1もh・・fτi・1…11yg・n…t・dby伽芸・。一バ・・,_,パ・π一 ρ吋zη}around the point(p,ρ).In other word−s,we can say that it is1oca11y exprgssed by ho1omorphic functions.Thereforeエ/工㊥2can be regarded−as a1oca11y free sheaf(A sheaf ア。n a scheme X is1oca11y free means that for any p∈X,there exists a neighborhood い・・hth・・月σ、窒①λ、。0.1喝.).W・d・趾・th…t・・g・・t・h・・叫…(ρザ。)、(Z/エ㊥2), which becomes1oca11y free sheaf of rankれ一The sheaf of d舐erentia1ρ一forms is d−e丘ned Ω隻…〈ρΩ妄andωx:Ω隻…detΩ妄is ca11ed the canonica1sheaf,which becomes an inve士tib1e sheaf(1oca11y free sheaf of rank1).For an arbi位ary given open setひ⊂X and a sectionσ∈F(ひ,0x),we have〃婁(σ)_〃王(σ)∈Z.Therefore we can de丘ne a. d−eriva七ion∂≡(〃1)、o(〃葦_ρ吋):0x→Ω妄,which satis丘es d(σ1+σ2)=dσ1+dσ2, d(cσ1)=cdσ1an(i d(σ1σ2)=σ2dσ1+σ1dσ2for anyσ1,σ2∈F(ひ,0x),c∈C−For in− stance,we obtain0:d(d(σ2))=d(2σ伽)=2∂σ〈dσwhere〈:Ω隻⑳oxΩ妄→Ω苧⑰and− theexteriorderivatived:Ω妄→Ω苧1ca.nbedeinedsatisfyingd(σ1+σ2):dσ1+dσ2, d(σ1〈σ2)二dσ1〈σ2+(一1)ρσ1〈dσ2forσ1∈I「(ひ,Ω隻),σ2∈r(ひ,Ω妄)・ We obseたve the space Spec(qε1/(ε2))・Which is the same as SpecC:{(0)}as a topo1ogica1space.Whose sheafis a1it元1e bit expanded byε,which means that secti㎝s 10 are express台d−byρ十εg andεc㎜be treated as in丘nitesima1.From this point of view, we can regard Spec(C[ε]/(ε2))as vectors−For ea.ch c1osed−pointρ∈X,a tangent vector atρis a morphism∫:Spec(C[ε]/(ε2))→X such that the image of∫as a point set becomesρ一There exists an open ieighborhood叫。fρsuch−that叫皇SpecA Let 肌ρbe the maxima1idea1of the ringλassociated to the c1osed pointρ.Th6morphism ∫:Sp・・(qε1/(三2))→叫豊Sp・・λ…b・t・…1・t・dby尤h・h・m・m・・phi・mア:λ→ C[ε]/(ε2)with∫(mρ)⊂(ε)、This transition gives us the idea that we can see a tangent vector as a e1ement of Homc(肌、/肌言,C)≡η一町is caned−a tangent space andη… U{η1ρi・a cosed point of x}i・caI1ed a tangent sheaf・wb cau a sec七ion of the sheaf ηa ho1omorphic vector丘e1d.With using a1oca1coordinate system{z1,..。,zη},a hoユ。1morphic vector丘e1dξis wr批enξ=Σ二、仏名,where each∼is aユ。cauy deined h・1・m・・phi・f…ti・…d{者,…去}i・th・d・・1b・・i・・f{d・・ゾ・・フd・η}・ Let X,γbe a1gebraic varieties.For an open setひ≠⑦,we consider the fo11owing e♀uiva1ence c1as・:Uσ≠⑦Hom(ひ,γ)/∼ ヅ・一グ・ O構、続1㌫}}出。。、。、、1、■、、ごヅ、1晩. Wecandeinearationa1maponanappropriateopensetbutnot onwho1eX−Apparent1y, open sets on X are determined by Zariski topoIogy. If a rationa1mapヅhas an inverse map as a rationa1map,wh三。h means that two rationa1mapsヅ,んare inverse maps each other ifroん,ん。r are equiva1ent to the identity morphism,thenグis ca1Ied a birationa1map.If a morphism7r:X→γis a birationa1 map,7r is ca1!e(1a birationa}morphism,Then,there exists到n open setひ≠②such thatπ1σ:ひ斗π(ひ)becomes an isomorphic morphism.we ch◎ose the biggest open set among them,and we write itひ』ig.Th=e c1osed set亙”c(7r)≡X\σ』ig is ca11ed an exceptiona11ocus ofπ.If it is a divisor,it is ca11ed an exceptiona1dlivisor. Let(一X,0x)be a norma1projective varietγLet D=Σユ1φD乞(φ∈Z)be a W6i五 divisor,i.e.,each D乞is a prime divisor,which.means Dづis a sub−variety in X and its co−dimension is L Since X is norma1,that is,a1−dimensiona1Noether1oca1ring Ox,ρ壱is DVR fo士a.ny generic point p{∈D乞,we ca.n de丘ne the order of zero points ordD、(ん)on−D乞 forho1omorphicfunctionん∈F(X,0x).Whenit is arationa1fmctionヅ:篭∈C(X)on X,we de丘ne its ord.er of zero points on D乞by ordD壱(r)=ordD、(ヅ1)一〇rdD、(r2).For any given rationa1function r,the number of prime divisors where ord−D、(グ)d−oes not become O is丘nite.Hence we may de丘ne the divisor of r as fo11ows: di・(ヅ)≡Σ・・d・壱(・)D1・ D{ A d−ivisor which becomes a divisor of a rationaI function is ca11ed a princip1e divisor. De丘nition2.4.0=Σ乞dρ4(φ∈Z)is caued Cartier divisor on a norma1projective variety X if for anyρ∈X,七here exists an open neighborhood乙ら⊂X and a rationa1 f…ti・・町、…hth・tDlσ、=di・(∼、)・ Letγ,Z be norma1a1gebraic varieties and∫be a morphism betweenγand−Z.Let Dz be a Cartier d−ivisor on Z.If each irreducib1e component of Dz d−oes not contain 11 the image∫(γ),then we can de丘ne the pu11−back∫*Dz.From the de丘nition of Cartier divisor above,for each point,there exist an open neighborhoodひand a rationa1function ザσonσsuch that DzIσ :div(rσ)。 This te11s that it is副ppropri就e for us Ito d−e丘ne ア*Dz1∫_。(σ)=d−iv(町。∫)onプ1(ひ).Then a1so we have0γ(∫*Dz)呈∫*0z(Dz)、 Let X be a norma1projective variety and D be a Cartier divisor on X.We can constructaninvertib1esheafassociatedtoD.Asheaf£iscaued−aninvertib1eshea.fif there exists a neighborhoodσfor each pointρ∈X such that£1σ隻0xlσ,where Ox is the structure sheaf of X. For any open setひin X,we de丘ne Ox(D)(ひ)二r(σ,0x(D))…{∫∈r(σ,片)l d−iv(プ)十Dlσ≧0}, where片is a.constant sheaf of the ra.tiona.1function丘e1d C(X),which mean−s that the sheafみsatis丘es八(γ)=C(γ)foranyopensetsγ≠②inX.Then,sin−ceD is Cartier, there exist an open neighborhoodσand a rationa1function rσsuch that Dlσ二div(ヅσ). Th…f…w・h…di・(培)十di・(グひ)一di・(んひ)≧0f・…yんσ∈r(σコ0・),・・d 1 0x(D)1σ=一0xし⊂フ㍉1σ。 rひ This means that Ox(D)is the associated invertib1e sheaf. For an invertib1e sheaf9,a section of9⑳σx戸x is ca11ed−a rationa1section of9.Since g is a.1oca.uy free shea.f whose rank is1,for eachρ∈X,七here exists an open setσ⊂X such 七hat∫:91σ隻0xlσ.Therefore we have glぴ⑳ox■σみIひ皇0xlひ⑭ox1σみ1σ皇み1σ. This indicates that we have the isomorphism∫:9⑱ox行呈み。Fo士a rationa1section 0≠θ∈F(X,9⑳oxみ),we de丘ne a zero divisor div(θ)by div(θ)Iひ=div(プ(θIσ)). AWei1divisor D:Σ4dρ仏∈Z)isca11ede鉦ectiveifa11山≧O.Wesaytwodivisors D,五are1inear1y equiva1ent ifD_亙becomes a princip1e divisor,which is written D∼五. We next de丘ne the1inear system ofD: lDl≡{亙1亙i・…丘・・ti・・di・i・・…ti・fyi・g亙∼D}・ Since X is norma王and.0is Ca」rtier,the1inear system l.01satis丘es ρ1星P(∬o(X,0x(D)))=∬o(X,0x(D))\{O}/C*, where∬0(X,0x(D))is the set composed−of a11g1oba1sections,which is aIso a11inear sub−spa.ce ofthe ra.tiona.1function丘e1d C(X). If there exists a positive integer m sucb that H0(X,0x(mD))≠0,the1inear system lmDl induces a rationa1map 亜一㎜。一:トー→Pd一利棚1, where dim∬0(X,0x(mD))二d肌十1. De丘nition2.5.Let X be an71−dimensiona1norma1projective variety and D be&Cartier divisor on X.The Iitaka−Kod−aira dimension of&pair(X,D)is d.e丘ned to be κ(X,D)=max{dimIm(亜1mD,)} m∈z〉o ,andκ(X,D)=一○c if there does not exist such positive integer m・Ad−ditiona11y,D is ・・11・dbigifκ(X,D)=肌. ユ2 Let X be a norma1projective varietγ Since X is norma1,singu1ar1ocus X,i㎎is a c1osed・set and its co−dimension is more than1(cod−imX,i㎎≧2),which is because Ox,ρis a1−dimensiona1Noether Ioca1norma1ring for any generic point jρof a prime divisor on X and−then Ox,p is a1so a regu1ar ring.This means that there is no divisor on X contains in X.ing.Therefore we have the iso平。rphism:Z1(X)皇Z1(X.eg),where X、、g≡X\X,i,g and Z1(X)is an ad−d−itive group composed−of au divisors on X.Since X工、g is smooth, the sheaf of d雌erentia1forms()妄restricted on X、、g becomes a1oca11y free sheaf of rank η.When we choose&rationa1section0≠θx、、、∈r(X。。g,ωx、。、⑳ox、。、八),then its zer0 divisor div(θx、、、)is the canonica1d−ivisor Kx、、、of X。。g・Wさwrite Kx∈Z1(X)as the divisor associated to Kx、。、∈Z!(X。。g)This is ca11ed the canonica1divisor on X.When X is smooth,we say a Cartier div享sor D is the canon三。a1divisor if Ox(D)星ωx. De丘nition2.6.A norma1projective variety X is Q−factoria.1if any prime d−ivisor on X is Q−Cartier. Remark2.1.We cantentheimportanceof1ettingX be Q−factoria1by1ooking at these fa.cts be1ow: ●We camot consider the pu11−back ofdivisors which are mt Q−Cartier. ●We camot de丘ne anintersecti㎝㎜mberofadivisor and acurvefordivisorswhich are not Q−Ca.rtier.Hence we caエ}not de丘ne nef d−ivisor,nuIIlerica.11y trivia。ユdivisor and so on,if it is not Q−Gartier. ●Wecamotde丘neIitaka−Kodairadimensio血,Kodairadimensionandnumerica1Iitaka− Kodaira.dimension for divisors which are not Q−Gartier. In ad−d−ition,we shou1d−know that a11divisors are Cartier on a smooth variety. De丘nition2.7.Let X be a咋d−imentiona1norma1Q−factoria1projective variety and Kx be the canonica1divisor on X.Then the Kodaira dimension kod一(X)of X is d−e丘ned。七〇be k・d(X):κ(X,Kx). Let(M,0M)be anη一d−imensiona1compact norma1comp1ex am1市。 variety(It wi耳 be d−e丘ned−forma11y in sub−section2.2).The reason we concid−er M is that it has Zariski topo1ogy a.nd rea1topo1ogy,especia11y it is separated in rea1topo1ogγAnd one more thing we shou1d mention here is that in Goro1Iary2.2,we win see that we have the isomorphism 耳1(X,0})皇H1(Xん,0㍍)where X is a projective variety,Xんis an−associated−compact comp1ex ana1虹ic v肛iety.This means if we cou1d de丘ne the丘rst Chem c1ass on M一 Cit a1so can be de丘ned−on a norma1projective va』riety. Letハ4i㎎be the set composed−ofau singu1ar points ofM.Letλ4.g:M’\M;i㎎,wbich is a rea12η一dimensiona1connected,oriented and compact topo工。gica1smooth varietγ Since〃is norma1,rea1co−dlimension of仏i,g is more than1.Therefore,we may consider the fundamenta1homo1ogy c1ass ω…[M1∈H・、(M,Z)堅∬・肌(払、。,π)隻Z、 13 Hereωis ageneratorofH2肌(〃,Z).Wemayde丘nethetracemap H2n(M,Z)斗Zbythe fund−amenta1homo1ogy c1ass and−which makes it possib1e to identify∬2η(M’,Z)with Z. ∬*(M「,Z)c狐be immed−iate1y regarded as a graded−ring(,which is actua11y commutative) with unit e1ement by cup Product[ω!1U[ω21二[ω1Uω21∈∬*(M,Z)。H*(M’,Z)is ca11ed− a singu1ar cohomo1ogy ring.We consider the exact sequence O→Z→,0M斗0㌦→O where0㌦is the sheaf of mu1tip1icative group whose sections are ho1omorphic functions which never become0.This sequence induces the next exact sequence(As written in[GH], we can con丘r皿the induced sequence becomes exa.ct by consid−ering Cさ。h cohomo1ogy groups.) O → 亙。(M一,Z)→Ho(M一,0〃)→H0(M,0云4) → ∬1(M,Z)→∬1(M,0M)→∬1(M,0㌦) 斗H2(M’,Z)→. Let g and£be invertib1e sheafs over M(They are a1so regard−ed as OM−mod−u1e de丘ned− 1ater.)、With usi㎎a tensor product of OM−modu1e9⑳oM∠二as an operation in the set of isomorphic c1asses of invertib}e sheafs,then it beco二mes狐Abe五ian group and which is written Pic(〃).Tb−e isomorphism H1(M’,0㌦)墨Pic(M.)、can be obtained−by consid−er三ng C6ch cohomo1ogy groups.This is because we can prove that if X is a separated−a1gebraic scheme,the sheafフ=is coherent,and the covering is an open a茄ne covering Z4,then these Cさ。h cohomo1ogy groups”(α,ア)isomorphic to cohomo1ogy groups of sheafs de趾ed by taking the right d−erived−functors of the g1oba1section functor Hρ(X,フ=)、for any p≧ 0.In genera1,Cさ。h cohomo王。gy may not give the same resu1t as七he derived−functor cohomo1ogy.lBut if we considerπ1,we can obtain仙e isomorphism even if we take the direct hmit1im一→H1(α,£)=:H1(X,£)over a11coverings of X.Therefore we have 亙1(Xコ∠:)皇亙1(X,ア).If X is a paracompact Hausd−or丘space,then these cohomo1ogy groups are isomorphic eadh other for anyp≧O.Which is why the1ong exactβequence above are obtained by observing G6ch cohomo1ogy groups.(cf.[Har1)The趾st Chem c1ass c1(9)can be de丘ned by the sequence above and the isomorphism: ∬1(M’,0㌦)皇Pic(M)∋9→c1(9)∈∬2(M,Z), Now we can d−e丘ne an ihtersection number of a Cartier d.ivisor D and−i−d−imensiona1c1osed sub−varietyγas fo1iows: (0M(D)グγ)…(c1(0M(D))U…∪c1(0M(D)))[γ1∈π, ∈H2壱(M,Z) where U indicates cup product,0M(D)is an invertib1e sheaf associated to D and[γ1∈ ∬2包(M一,Z)is the fundamenta1homo1ogy c1ass ofγ・Therefore,we can consider尤he丘rst Ghem c1ass and in七ersection number on a norma1projective variety as we11. De丘nition2.8.Let X be a norma1projec也ve variety.A Cartier d−ivisor D on X is ca11ed nef−if we have(0x(D)・0)≧O for any curve O on X・ 14 We de趾e anumerica11ytrivia1canonlca1divisor. De丘nitio皿2−9.Let X be a norma1Q−factoria1projective variety.Canonica1divisor Kx is c&11ed numerica11y triviaいf we have(0x(Kx).0)三0for any curve O on X. Now we d.e丘ne numericaHitaka−Kod−aira d−imension: Let X be a norma1projective variety and−D be a nef Cartier divisor on X.Numerica.1 Iitaka−Kod−aira dimentioI1is deined as fo11ows: μ(X,0x(D))…≡max{(0x(D)グγ)≠0}, {∈Z≧o whereγ⊂X is an{一dimensiona1c1oseasub−va.riety.Ifcanonica1divisor Kx is numerica11y 七rivia1,we haveμ(X,0x(Kx))二〇.Add−itiona.11y,we introduce so皿e other de丘ni七ions apPeared in our main resu1ts. De丘nition2.10.A projective Ga1abi−Yau variety is a norma1Q−factoria1projective va− riety with numerica11y triviaI canonica1divisor. Deinitiom−2.11.Let X be a norma1Q−factoria1projective variety.Let7r:X!→X be a reso1ution of singu玉arities and1et{亙}琴=1be the irreducib1e components of the exceptiona1 1ocus亙”c(π)ofπ一Then there exists a unique conectionφ∈Q such that ρ K・にπ*K・十Σα1風 ・ 乞・=1 We say X has1og temina1singu1arities ifα{>一1for a11ゼ.Ifα{=0for a11i,thenπis ca11ed crepant. Last1yコwe d−e丘ne the weak K或h1er−Ricci且。w on Ca1abi−Yau projective varieties with 1og termina1singu1arities.Let X be a norma1Q−factoria1projective variety andωbe a semi−positive c1osed(1,1)一form on X.We de丘ne P8∬(X,ω)to be the set of a11upper semi−co早tinuous functionsψ:X→卜。o,oo)such thatω十ρ∂∂ψ≧0. De丘nition2.12.Let X be a norma1Q−factoria1projective Ca1abi−Yau variety with1og temina1singu1arities.Letωo be a rea1semi−positive c1osed(1,1)一form on X,positive and smooth on X、、g,equivaIent to the pu11−back of the Fubini−Study metric by a projective embedding of X.A fami1y bf rea1c1osed(1,1)一formsω(乏,.)∈[ωo]on X for t∈[0,oo)is ca11ed−a solution of the wea」k K批1er−Ricci且。w if it sa.tisfie千fo11owing−cond−itions: (1)ω(之,.)is positive and smooth on X、、g for広>O.Furthermore,we have ω=ωo+〉⊂了∂∂ψforso㎜一epotentia1ψ∈0oo(t0,oo)×X、、g) and ψ,・)∈P服(X,ω・)∩ム。o(X)f…1㍑∈[0,由)一 (2) { 品ω(1)=一助(ω(t))・・[0,・・)・X。。。, ω(0デ)=ω・ ・nX・ 15 2.2 Ana1ytica1methgd肪r studying on a1g6braic varieties First1y,we d−eine a po1yd.isk: Dη≡{・(π1ゾ・・,”几)∈Cn11軌i<1 for a11づ} whose topo1ogy is rea1.And we designate a sheaf of comp1ex ana1沖。 functions as the structure sheaf0色几。f Dη. Let ∫…(んエゾ..,ん㎜)0色れ be a sheaf of id−eaIs generated.byん1ゾ..,んm∈F(D肌,0島れ).For the sub−sheaf∫of0島れ, we de丘ne a subset of Dηand−a sheaf as a1oca1mode1of a comp1ex ana1ytic space: 〃…{ρ∈Dn1伽(ρ)=0 for a11ゼニ1,_,m}, 0島…0㌫/∫、 The pair(M,0㍍)can be reg趾d−ed as a.rep1acement of a.n最近ne space.A1oca1−ringed space(X,0隻)is ca11ed a comp1ex a血a1ytic space if for each p∈X,there exists an open neighborh−ood一ひp sucb−that(ひp,0隻□ひ、)is isomorpb−ic to(M’,0伽).Genera11y,an a箇ne space can be covered with a po1yd−isk and a po1ynomi&1can be recognized as a comp1ex ana1ytic function.Therefore,an a1gebraic scheme X h−as an associated comp1ex ana1ytic space Xん.Moreover,since rea1topo1ogy of Xんis obvious1y stronger than Zariski topoIogy of X and−as we mentioned,an a工gebraic function is regard−ed as a comp1ex anaIytic function,we may consider a morphism∫:(Xん,0隻h)→(X,0x).Note that the ・・t・f・11p・int・・f炉・ndth…t・f・1…dp・int・inX…m・t・h・d…h・th・・. A comp1ex ana1ytic space(M,0格)is caned a compiex a血a1y七ic variety ifit is reduced, irreducib1e in Zariski topo1ogy and separated in rea王topo1ogy.A comp1ex anaIytic variety 〃is ca11ed smooth if for each pointρ∈M,a1oca1ring0格,、is regu1ar.We say M is a comp1ex manifo1d if M is a smooth comp1ex anaIytic variety.An a1gebraic scheme X becomes an a1gebraic vaI・iety is equiva工ent to that a comp1ex ana1ytic space Xんassociated to X becomesacomp1exana1沖。variety.Furthermore,that X is smooth is a1so equiva1ent to that Xんis smooth. Let(X,0xルea1oca1−ringedspace.Need1esstosay,0x is asheafofrings onX−We now define Ormod−u1e. De丘nition2.13.A sheafア。n X is ca11ed a Ox−modu1e if it satis丘es the fo11owing COnditiOnS: (1)ア(σ)is Ox(σ)一mod−u1e for each open setσ⊂X一 (2)For each open set一γ⊂ひ,the diagram de丘ned by sca1ar mu1tip1e and restriction map Ox(ひ)xア(ひ)一一→ア(σ) ! ! 0x(γ)xア(γ)一一→ア(γ) becon1es commutative. 16 We also de丘ne a homomrphism ofOx−modu1e and a tensor product ofOx−modu1e. Deinition2.14−Letア,9be Ox−modu1es.∫is ca11ed a hom−omorphism of Ox−mod−u1e fromアto9,ifit is homomorphism ofa sheafofAbe1ian group and−0x(ひ)一1inear on each open se七Iひ⊂X.The set of a11homomorphis㎜s of Ormodu1e betweenア,9is written Homox(ア,9). The tensor product∫’⑭ox g is d−e丘ned a.s a sheaf associa.ted to a presheaf: X⊃。p、、σ→ア(σ)⑭ox(σ)9(ひ):the tensor product as an−0x(ひ)一modu1e. Let∫:X→γbe a continuous map of topoIogica1spaces.For any sheafア。n X, we d−e丘ne∫。ア(γ)、三ア(プ’1(γ))for any open setγ.⊂γ,which is ca11ed the direct image sheaf onγ、As we know,we can construct a sheaf from a given presheaf and w仁ich ha.s the sa.me sta.1阜as the preshea.f does.This is ca.11ed shea丘丘。a.tion.The shea。丘丘。ation of the presheafσ→工im∫(ひ)⊂γ9(γ),whereひis any open set in X,γis an open set conta.ining∫(σ)inγa.nd g is a sheaf onγ,is ca11ed−the inverse image sheaf on X a・nd wri杭en∫^19,Let∫:(X,0x)→(γ,0γ)be a morphism of1oca1−ringed−spaces.Ifアis an0γmodu1e,then∫、アis an∫、0rmodu}e,which is ca.ued the direct三mage ofアby∫. Let g be a sheafof0γ一modu1es.We can show the adjoint property:Homx(∫■19,ア): Homγ(9,∫、ア)for any sheafア。n X(cf.[Ko])。Since we assumed g is an0γ一modu1e, there exists a homomorphism0γ→9.To take a1ook at the adjoint property,we obtain Homγ(0γ,9)=Homx(∫一10γ,∫■19).Therefore,there exists a homo㎜orphism ∫一10γ→∫’19,Gombining with the property of the0γ一modu1e9,we conc1u−de1that ∫’19is’an∫一10γ一mod.u1e.趾。m the dle丘nition of the morphis皿,we have a morphism 0γ→∫、0x.A mor{ism∫一10y→0x can be obtained by the ad−joint property.This gives us the fac七that Ox is an∫一10ヅmod−u1e.For these reasons,we血ay d−e丘ne the inverse image of g by the morphism∫as fouows: ∫*9三∫’1g⑳∫一〇γ0x. If g is assumed to be an invertib1e shea.f onγ,then there exists an open neighborhood γfor each point g∈γsuch that glγ皇0γ1γ.Thgrefore,for a.n open setひ⊂X with∫(σ)⊂γ,we have(∫*9)1ひ=(∫一1g)1σ⑳(仁・oγ)1,0xlσ呈(∫一10γ)1σ⑳(仁・oγ)■σ 0xlσ竺0x.σ,that is,∫*9is a1so an invertibIe shea£ In our case,the morphism is L:(X,0x)→(PN,0州)and曲e invertib1e sheaf of OpN−mod−u1es is Opw(1).Then the inverse im一&ge of Opw(1)byムis乙*0pw(1)=r10州(1)⑳ゲ。o呼w Ox,which is an invertib1e sheaf on X a.nd very amp1e a㏄ording to the fo11owing de丘nition. De丘pition2r15・Let X be a projective variety and g be an invertib1e sheaf on X・Let ム:X早→理M be a projective embedding.9is ca11ed very amp1e if9≧ム*0pjv(1)19is ca11ed−amp1e if9腕is very amp1e for some positive integer m.A Cartier d−ivisor D is ca11ed ampIe if the associated invertib1e sheaf Ox(D)is amp1e.D is ca11ed semi−amp王e if Ox(D)帥・is generated by g1oba1sections for some poβitive integer m. Therefore,if we narrow our argument d−own to the smooth projective variety X、、g,we c狐。onsider a ho1omorphic1ine bund1e associated to the invertib1e sheaf乙*0pN(1)from Goro11ary2.2and it is amp1e sinceム*0ぴ(1)is ample.This mea.ns tha.t the丘rst Chem c1ass of them is positive andム*ω冊>O on X、、g・We next introduce the de丘nition of coherent sheaf and its examp1es. 17 De丘nition2−16.Let(X,0x)be a scheme.Letアbe a sheafof Ox−modu1es、アis ca11ed a quasi−coherent sheaf if for any pointρ∈X,there exist a neighborhoodσρand an exact SequenCe 0・彫→0・1害卜凡、→0・ アis ca11ed a coherent sheaf if X is an a1gebraic scheme and一∫,J are丘nite sets. Remark2.2.(Examp1es ofthe coherent sheafof Ox−modu1g) (1)0x:曲e structure sheaf, (2)0x(D):.the invertib1e sheaf for Cartier d−Msor D, (3)Ω妄:the sheaf of ho1omorphic di任erentia1力一forms on a smooth a1gebraic variety X, etC. We can丘nd some examp1es ofcomp1ex ana1ytic fundtions not to be a1gebraic such as an exponentia1function.But the next theorem te11s us that each idea can be recognized as the same one by putting it into perspective.Before the theorem,w♀shou1d−mention the de丘nition of th(三equiva.1ence of two categories. De丘nition2.17.Let C,σbe categories.For two covariant functor W and−Z from C to σ,λis ca11ed−a natura1transformation fro叫W to Z and−the set ofa11ofwhich is written Hom(W,Z)if it satis丘es the fo11owing cond−itions: (1)For any objectア。f the category C,we haveλ(ア)∈Hom(W(ア),Z(ア))、 (2)For a morphismア:ア→9of the category0,the next diagram becomes commuta− tive in the ca」tegory C’: w(ア)4w(9) λ(ア)⊥ ⊥λ(・) z(ア)一一→z(9) ・z(∫) If A(ア)is an isoム。rphism for any objectア,λis ca11ed−a natura1isomorphism f平。m W to Z,which is written W豊Z.We can de丘ne these for contravariant f㎜ctors in the Same Way・ De丘nition2.18.We say C andσare equiva1ent if two functors W:C→σand Z:σ→C satisfy W o Z製1αand−Zo W豊1c,where lc,1αare functors which map an object and a morphism to themse1ves. Theorem2.1.(([Se1)G6om6trie A1g6brique et G6om6trie Ana1ytique)Let X be a pro− jective scheme.Then,a map from a category of a coherent shea.f of Ox−modu1es on X to a category of a coherent sheaf of Oxん一mod−uIes on a compact co二mp1ex ana1ytic variety Xんassociated to X (0・んX)→(舳Xl)(ア→戸) gives us the equiva1ence of尤wo categories。 18 Tbe theorem can be trans1ated by the next coro11ary. Coro11ary2.1.Let X be a projective scheme−For any coherent sheaf of Ormod−u1eア 。n X and any integer m,we obtain the next isomorphism between two cohomo1ogy group: ∬例(X,ア)皇か(Xん,戸). PR00F.Note that objects of the category(0oんx)are Ox,ア,._and−morphisms are Homox(0x,ア)ゾ。.On the other hand,objects ofthe category(0oん〃)are Oxん,アん,.、. and morphisms are Homox、(0xわ,戸)ゾ。.And from,Theorem2.1,we have Ho皿。x(0x,ア)皇Hom〇二、(0隻,アん)一 Since each set of g1oba1sections foI・アand∫.んis given by ∬o(X,ア)=F(X,ア)=Homox(0x,ア), Ho(Xん,戸)一F(Xんコ戸)=H・m・、、(0隻,戸)・ Therefore we have ラ ∬O(X,ア)皇∬O(Xん,戸). Since higher ord−er cohomo1ogy groups are induced by曲is isomorphism,th−is c1aim can be Coro11ary2.2.Let X be a projective scheme.Then’we have the isomorphism H1(X,0妄)皇∬1(Xん,0如). From GoroI1ary2.2,we may conc玉ude as fo11ows.Wもwrite a set of a11Gartier d−ivisors on X as Gdiv(X).Let X be a smooth projective varie}Let D∈Cdiv(X)and Ox(D)be an associated−invertibIe sheaf.First軌we know that∬1(X,0隻)竺Pic(X)隻Cdiv(X)/∼ where Pic(X)一ind−icates the set of isomorphic c1asses of invertib1e shea主s on X and∼ means1inear1y equiva1ence−On the other hand一,we have the isomorphism∬1(Xん,0妄ん)皇 Pic(Xん)where Pic(Xん)means the se七〇f isomorphic c1as6es of ho1omorphic1ine bund1es over the projective manifo1d Xん.As aresu1t,we may identify invertib1e sheaves in Pic(X) (or divisors in Cdiv(X)/∼)with ho1omorphic1ine bund1es in Pic(Xん).Therefore,we can identify Ox(D)(or D)with some ho1omorphic1ine bund−1eムρver Xん.Ad−d−itionauy,since PN is a.smooth vaヰety,we may id−entify invertib1e sheafs on Pw wi七h ho1omorphic1ine bund−1es over the associated manifo1d C狸N. Wewi11takeadvantageofatoo1ca11ed areso1utionofsingu1arities,Thenexttheorem guaran−tees the e対stence of a smooth birationa1mode1. Theorem2.2.((〔Hi])Hironaka desihgu1arization theorem)For any a1gebraic variety X de丘ned on a五1ed−whose characteristic is0,there exist a smooth a1gebraic variety X’and a biratiom1projective morphismπ:X’→X.Moreover,πis an isomorphism on X、、g and we have E”c(π)=π’1(X,i㎎). 19 The birationa1㎞ρrphismπin Theorem2.2is ca11ed a reso1ution of singu1arities of X.It goes without saying that our a.1gebraic va.riety is de丘ned−on C whose characteristic is0.Therefore we may make an argument on a smooth variety instead−of a variety with singu1arities.If X is assumed to be a projective variety,we1ift our prob1ems to a smooth oI1e and then,for instance,we can teu some properties of invertib王e sheaves with stud−ying on associated−ho1omorphic1ine bund1es over an associated projective manifo1d. In addition to it,we wi11consider a project三ve manifo1d instead−of a smooth projective variety in section7.For these reasons,it is e飼。iρnt for us to con丘rm the fo11owing idea a.nd renユark. Let M be a comp1ex manifo1d.Let D⊂M is a compIex sub−manifoId of co−di皿ension 1,which is caエ1ed a non−singu1ar divis0L Le七{σα}be an open cover of M.We assuIne that a.t1east oneひαsa.tis貴es D∩ひα≠0. Then D∩ひαis given by1oca.1d−e丘ning ho1omorpb−ic functions{∫α},wh−ich vanish a1ong D to order1.If D∩ひα≠の,then D∩ひα:{ρ∈σα■∫α(ρ)=O}.When D∩ひα=⑦,we choose a f㎜ction wh1ch does not become zero everywhere such as∫α≡ユ。nσα,With−using{∫α}and{ひα},we can de丘ne t・…iti・・f…ti…1αβ一分・・ひα∩ひβ・B・d・丘・i・・i…i・w・パαβi・h・1・m…hi・, non−zero everywhere onひα∩σβand sa.tis丘esらβ乙β7=らγ Therefore the associated holomorphic line bund−1e ca。早be d−e丘ned−by the pair({σα},{尤、、β}),which is ind−epend−ent of choice of1oca1de丘ning1functions. Remark2.3.Let X be an作dimensiona1projective manifo1d and L be a ho1omorphic 1inebund1e overX−We maysay工is amp1eifc1(ム)>0andムis semi−amp1e ifc1(ム)≧0 by Kod−aira.Embed−d−ing Theorem and a1so L is ca11ed big if c1(L)n=∫どRZム>0,where ∼is a smooth Hermitian metric on工and一馬、エis a curvature d−e丘ned.by也e Hemitian metriC. Fin&11y,we construct a Ga1abi−Yau vo1ume£orm麦rom a mmerica11y trivia1canonica1 divisor Kx.Let X be a projective Ga1abi−Yau variety,Kx be a numerica11y廿ivia1and π:X’→X be a reso1ution of singu1arities.Since X is Q−factoria1,Kx is Q−Cartier.This implies thatユ 狽??窒?@exists su缶。ient}y1arge positive亘nteger m such that mKx becomes Cartier.As we see the de丘nition of nef above,Kx is nef if.Kx is numerica11y trivia1.Put it a11together,mKx is nef and Cartier.Genera11y,if X is norma1and D is nef Gartier, theh we have μ(X,0x(D))≧κ(X,0x(D)). This ind−icates tha.t we have the fo11owing inequa1ity: O:μ(一X,0x(mKx))≧κ(X,0x(んKx))=κ(X,0x(Kx))=kod(X) Whether kod(X)≧O or mt is inc1uded in the prob1em ca11ed ab岬dance conjecture. In our case,fortunateIy,if X is a normaI Q−factor三a1projective variety with1og termina1 singu1arities and三ts canon三。a1divisor is mm戸rica11y trivia1,then七he resu}t that we have μ(X,0x(肌Kx))…κ(X,0x(mKx))=kod一(X)二〇was proven in[Na・1and1ater[Ka21 proved it in a di丘erent way. This te11s us that dim∬o(X,0x(mKx))=1for su担。ient1y1a・rge integer m>0・Note that Ox(肌Kx)竺0x(Kx)帥.Since曲e canonica1sheafωx:Ω隻is aIso an invertib1e 20 .sheaf,there ex主sts an open neighborhoodひfor eachρ∈X、、g such that Ox(κx)腕1ひ星 0異ησ皇(Ω隻)㊥mlσ. There exists an m−tup1e伽formτ∈∬o(X,0x(mκx)1σ)蟹∬o(X,(Ω隻)㊥mlσ)such th−at it can be writtenア=炉(由ユ〈…〈加η)㎜whereひ⊂X、、g is an open set sma11enough to consider a1oca1coordinate system{z1ゾ..,z肌}.and一ρ:ひ→A1is a1oca11y d−e丘ned ho亘。morphic function which has one to one correspondence with a ho1omorphic function σ∈F(ひ,0x)。We de丘ne an(η,η)一form 1 2 Ω≡(τ〈テ)扁=1ψ1扁dz1〈d芝1〈… 〈dzれ〈d乏η〉o onx、、g・ Then 肋(Ω)…一月∂∂1・gΩ二一ρ∂∂1・舳嘉 is we1Ld−e丘ned−a.nd._捌。(Ω)∈c1(0x(Kx)).↑he(η,η)一formΩis ca11ed−Ca1abi−Ya.u volume form and−satis丘es 2 ! ユ 舳(Ω)一一一月一{一メσ〈dσ十一ψσ)}一0・・X。。、 η7 σ σ whereσ∈F(ひ,0x)for any open setσ⊂X、、g,we used id−ent追。a.tion betweenψandσ. 2.3 Ca1abi symmetry conditon In order to si血p1ify our prob1em,we wouId}ike to use Ca1abi symmetric condition.For this reason we need亡。 start the K象h1er−Ricci丑。w at a昨b㎜d1e.We can de丘ne the b㎜dユe on a projective variety in the fo11owing way:We de五ne the symme拉ic a1gebra of Ox−modu1e丘rst.Let(Xコ0x)be a五〇caLringed space,and’M be an Ox−modu1e.For each open setσ⊂X,M(σ)is an Ox(ひ)一二modu1e.We de五ne TP(M(ひ))…⑳ρM(σ) andτ(M(σ))≡≡㊥ρτρ(M(σ))The symmetric a1gebra3(M(ひ))=㊥、≧o8「(M(ひ))of ルコ(ひ)to be the quotient of T(人イ(σ))by the two−sid−ed id−ea1gengrated by an expressions の⑳ω一・ω⑱ω,for a11の,ω∈ノレ‘(ひ)一The shea丘丘。a・tion of the preshea.fσト今8(人イ(ひ))is written8(M)and ca11ed the sy㎜皿etric a1gebra of M,Its component3「(M)in d−egree r is ca11ed the rth symmetric power. De丘nition2.19.Let X be a projective variety and g be a工。cauy free sheafofrankη十1 on X.Let 8三3(9)一㊥3「(9)・ r≧0 8,which is the symmetry a1gebra of9,is a sheaf of graded Ox−a1gebra.Then we de丘ne P(9)≡Proj8,which is deined一一by g1uing Proj8(ひ)for each open setσ⊂X.This is ca11ed a IP満一bund1e over X. We de丘ne〃1−bund1e overPw in thefo11owi㎎way: Let £≡0榊(_1)㊥0榊 where0帥(一1)(竺Homo,j。(0ぴ(1),0ぴ))denotes an invertib1g sheaf associated to the hoIomorphic1ine bmd1e OcPN(一1)(=0cPN(1)*)and0ぴis the stmcture sheaf・Since 21」 £is a1oca11y free sheafofrank2on呼N,1P(∠1)is&P1−bund1e over Pw,We observe this P・・j・・tiv・bmd1・・…PM: π。パP(£)→Pw。. We now uti1ize homogeneous coordinates(”1,_,榊十1)on AN+1\{0}.Then the smooth projective variety Pw can be covered with/V+1−a舐ne open setsσ1,.。.,ひN+1 and−eachσ{is ch−aracterized by the cond−ition吻≠0−For a丘xed−4,the虹homogeneous ・…di・・t・・(・1、),…,杯1,朴…オ1)・…i…b・イ、)一芸・・∼・d…h・… setσ乞is given by 卜Sp・・C[・と)ゾ・・,・1包),…,・銭十1ドAw・ 為 G1・i・・m…ポ”\咋も))斗いγ(・1ゴ))・…i…b・方沌一夫,・h…叫\ (毒) γ(・み))一{P∈咋乙)州・“1・d・…ib・th・Plb・・d1・・…Pwb・i・t・・d・・i・g・…j…i・・ ho1omorphic coord・inateξ(1)∈Al U{○c}onπ証(σ1)皇ひ乞x理1∋((イ、)),ξ({))(which is isomorphic)with the transition re1ation: ξ(五)一旦ξ(、)・・π{σ、岬. 叫 Then we can d.e丘ne曲e fo11owing two divisors on the smooth projective variety P(£)in th−e fo11owing way: D。。三{ξ(1)二・・},D・・1{ξ(1)=0}・ A・…1・t(・・一・・,π芒十・).ゾ十1//0/・ithπ1≠0b・・・…一t・一・・・・・・・…三・d・・1・ t・・p・mt(簑,,κ毒1,苧、今1川∈(P(£)\(D・UD・。))∩π正犯)W・thth・・ correspondence,we see that the property ofsmooth positive c1osed一(1,1)一forms in Aw+1\ {O}canbepuuedbackinto理(∠二)\(DoUDoo). 孔et∬N_1be the hyp6rp1aI1e divisor of Pw,whose inverもib1e sheaf Opw(∬w_1)can be identi丘ed with the hyperp1ane1ine bund1e Ocpw(ユ).We de丘ne the pu1!−backed divi− sor DH…π紅(∬w_1).Since these div』isors are a11Cartier,we can consid−er associated− invertib1e sheaves0四(z)(D。。),0p(z)(Do)and0町£)(D冴).工n our case,we have c1(0p(£)(D∬))=c1(0p(£)(D。。))_c1(0p(£)(Do)), c1(P(£))=2c1(0炉(£)(D。。))十Nc1(0p(£)(DH))、 Furthermore,these c1asses c1(0四(£)(D。。)),c1(0皿(£)(Do))span H1・1(P(∠:);R)(cf.[SW1], [SY21,[G珂).Sinceαc1(0呼(£)(D亙))十う。!(0四(£)(D。。))>0if and on1y三fα>0and6>0, we may take a smooth positive g1osed(1,1)一form on P(∠:)as foI1ows: ωo∈6oc1(0硲(z)(D。。))一αoc1(0p(z)(Do)), wh・・・・…t・・t…帥α・・0,6・・O・・dw・・…m・う。篶。・ハ・・1・tt・・・・・…1ty We say a smooth positive c1osed(1,1)一form satisies Ca1abi symmetry condition ifit is invariant under the action of the group G!皇σ(W+1)/π!=σ(ノV+1),which is a ma対ma1compact subgroup of the automorphism of四(∠1)via the natura1action on AN+1\{0}where Z正二is the centra1subgroup consisting of sca1ar mu1tip1ications by the ん一th roots of unity(cf.[Ga1])、 22 Now we assume the(1,1)一formωo∈αoc1(0叩)(DH))十(ろ。_αo)c1(0胆(£)(D。。))satis丘es Ca1abi sy㎜1metry condition above.Then there exists a potentia1funct三〇n吻:刎。(ρ) R→聡wh…ρ…1・・((1・1・(1)12)1ξ(・)12)∈(一・・,・・)一・(・)トΣμ1ブ。、1イ台)12・・ひ1Si… 呼1is homeomorphic to32in a rea1topoIogy(This is because狸1=A1U{oo}is the one−point comp&cti丘。ation ofA1.When it comes to CP1=Cl UC0,批is砒eo二morphic to82.) ,the1oca1coordin就esξ(壱)=(ξ(壱),ユ,ξ(4),2)∈R2皇C1⊂A1are g三ven by the 1oca1trivia1ization of P(£)一When considering an ino1usion map of topo1ogica1space ム:Cη→Aη,the map A肌⊃σ→ゲ1(σ)⊂Cn gives us tbe bijection between the fami1y of a11open subsets of An and七he fami1y of a.11open subsets of Cη一In th−is regard一,we identi丘ed the1oca1coordinatesξ二(ξ1,ξ2)∈C!with七hat ofAl above.We wi11use this identi五。a」tion in the proof of Lemma.3.6. This function sa.tis丘es fo11owing conditions: (1) ∂ ∂2 砺u・(ρ)〉0,∂ρ・u・(ρ)>0fo「a11ρ∈(巾。o) (2)There exist smooth functions,for8∈[O,oo),σo,o(8):10,oo)→R,σo,。。(8) [0,・・)→R { σ。,・(θρ)刈・(ρ),σ。,。。(ゼρ)苅・(ρ)一6。ρ, 品」一・σ・,・(・)>o,岳1、一・ひ・,。。(・)>o (3) ωo=αoωF8+^∂∂uo(ρ)∈αoc1(0呼(£)(か亙))十(ろ。一αo)c1(0肥(£)(D。。)) whereω冊denotes the pu11−back of the Fubini−S加一dy metric on PM by7rp』v. The condition(2)is the asymptot豆。 properties of伽。 as亡→土。o for extending the form in七〇a11㌍(∠:).Since4(ρ)is strict1y monotone increasing,we obtain as fonows: 0= 1im uら(ρ)<砒ら(ρ)≦1im uら(ρ)=6o. ρ→’oo ρ→oo Let X be anη一d三mensiona1project三ve Ga1abi−Yau variety with1og termina1singu一 エarities,Since X has a projective embedd一虹g into PN,we restrict our id−eas above on X。。。: P(£)単x、、、}w. We choose the inite number of open coverings仰}壱=1,.、.,η十10f X、、g.For a丘xed乞,the i・h・皿・・・・・・・・・…di・・…(イ、),…1,布1,1,朴…,・ポ)…gi…b・・己)一芸㎝ひF {軌≠O}・We have the isom−orphism柵(ひ1)皇ひ1×狸1・ 23 3 Convergence res耳1t und.er the K註h1er−Ricci且。w in the Gromov−Hausdor丘sense 3.1 Convergence.in the Gromov−Hausd.or任sense Let X be a projective Ga1abi−Yau variety and P(£)be the皿1−bund1e we de丘ned in the previous section.We study the behavior ofthe so1utionω(君)ofthe K邑h1eトRicci且。w on the smooth project三ve variety狸(∠二)starting at the smooth positive cIosed(1,1)一formωo: ∂ 一ω(カ):一R4c(ω(尤)), ω(0)二ωo. ∂カ There−exists a unique smooth soIution on[0,T)×P(∠1)where T>0is given by T≡・・p{t>011ω。1一τ・。(理(£))>0} where c1(P(∠:))。。c1(0炉(z)(_Kp(£)))and K酔(乙)三s the canonica1divisor on理(Z).This fa(:t can be obtained by()bserving a Monge−Ampらre且。w equivalent to the K或hler−Ri㏄i 且。w.We wiu give a more detai1ed exp1anation1ater.As we know,we have c1(町£))二 2c1(0p(£)(D。。))十Nc1(0叩)(D亙))〉0.Therefore,P(∠:)is Fano.This gives us T must be丘nite in this situation.This fa.ct is a1so con五rmed by the fo1工。wing way:Let K be a ho1omorphic−1ine bundIe associ銚edも。 the invertib1e sheaf Op(£)(_K昨)).Por any ・∈X、、。,w・b・…1(K)・π{・トムユRl工。>0wh…い…m・・thH・miti・・m・t・i・ on K and凧κden−otes its curvature,This tens us that c1(K)must be positive and then we obtain c1(1P(£))>0. Note that [ωo]_Tc1(P(£))二(6o_αo_2T)c1(0炉(∠=)(D。。))十(αo_丁前)c1(0p(£)(D∬)). Sinceαc1(0廻(£)(D亙))十6c1(0呼(£)(D。。))>0三f and on1y ifα〉0and6>O,the singu1ar tm・Tm・・tb・・q・・1t・虹ヂ>0(N・尤・th・tw・h・・・…㎜・d箭>わ。デ。・・dwh・・h is equiva1ent to(W+2)Iαo−Mろ。>0一). On the other hand,we can take a s二mooth positive c1osed(1,1)一formωx、。、on X。。g satisfy三n−g[π差〃ωx工。、]=c1(0p(£)(DH)).Therefore, ・fw・・h・…(岬 麹 。帝ω・工、、・・th・p・11−b・k・df・・mπ歪。ω。、、、,th・・th・1m・tmg・1… SatiS丘eS [ω・トT・1(叩))=[帝ωX、。、1・ W・・…h・・m・・thp…t・…1…d(1,1)一f・m(w+2)書。’戦ω。、。、m・h・f・11・w1・g・・g・m・・t and we simp1y write itωx、、、・ In this section,we prove the next proposition,whicb teIIs us the resu玉t of the conver− gence in the Gromov−Hausdor丘sense. Proposition3.1.Under the assumptions above,we have a sequence of times{亡ゼ}乞sucb− that㍍→グas乞→○o and a d−istance function dx、、、,T0n X工。g,which is uniform1y ・q・i・・1・・tt・th・di・t・…fm・ti・・i・d…dbyωx、、、,…hth・t(P(Z),凶づ)・・・…g・・t・ (X。、g,dx、、、,τ)in the Gromov−Hausdor迂s♀nse,whereφ岳isIthe distance function induced by the so1ution ofthe K託h1er−Ri㏄i且。wω(ち)、 24 Firstly,we(ie丘ne the convergence in the Gromov−Hausd−or丘sense.Let(X,d)be a metric space and two subsetsλ,3be given.We de丘ne the Hausdor丘distance between λa.nd3to be dH(λ,3)…i・f{ε>01λ⊆3(ε),3⊆λ(ε)}, whereλ(ε)三∪、∈λ{工∈X l d(α,”)≦ε}.Thenwe de丘ne the Gromov−Hausd−or丘distance between two compact metric spaceσ,γ: dG。(σ,γ)≡inf{u,川d。(伽(ひ),の(γ))}, where u:ひ→W,ω:γ→W are isometric embeddings into a metric space W.We say that{σt}&f&m三1y of compact metr三。 spaces converges to a compact metric spaceひ∞in the Gromov−Hausd−or任sense if theひt converges toひ。。with respect to dGH. 3.2 Some estimates for the proofofProposition3.1 場emma3.1.There exists a uniform constant0>O such that ω(老)≧σ帝ωx、。、 First of a11 we d.e丘ne reference皿etrics for左∈[0,T)一 , 1 φ1≡ア((トt)ω・十帰ω・…)・ By considering the way of choosing the(1,1)一formωx、、、,indeed we have 同: 1 テ((トむ)[ω・1+C[帝ω・…1) T一之 苫、 = = [ω。1+一([ω。1−T・。(P(£))) T T [ω。1一亡・。(P(Z))二[ω(君)1 Therefore we bave[ω(君)一心1二〇.Sinceω(苫)一㌫is associated to a rea1exact(1,1)一 formη亡。n a projective mani£o1d associated to P(£),there exists争rea1smooth function 帖。n the manifo1d such thatηt=’了∂∂仰(This resuIt is given by considering Hod−ge deco皿positi㎝fortheoperator△∂(cUGH]).)。Wewritearea1smoothc1osed(1,1)一form associated to〉二τ∂∂仰,1ikewise〉⊂了∂∂物withψ∈0oo(P(∠1))R.LetΩbe the unique smooth vo1ume form on F(∠1)sat三sfying ・・(・(・))1一助(Ω)一月111・・Ω一÷(帝一い1)÷∫(、)Ω一1・ We assume tha}is the so1ution of the parabo1ic comp1ex Monge−Ampさre equation be1ow: { 紫一1・・(0・十与卿)れ, {一・:0 25 We can compute as fo11ows: ∂ ^∂δ(が一一舳(ω(t))・・1・(Ω)コ and ∂ ∂ ∂ 玩ω(卜沖・月∂∂(が一一月1・(ω(1))・ Thereforeω(之)becomes the so!ution ofthe K義hler−Ricci且。w andvice versa.We explain how to geいhe so1ution of the Mlonge−Ampさre且。w for亡∈〔0,T)in the fo11owing.If we get it,which means that we aIso obtain the unique existence of乞he so1ution of the K註h1er−Ricci丑。w for広∈10,T). When weconsider the1inearization,we have 品(害)一・一(£)(嵜)…一(土)(払)・ This means the right hand side is e11iptic,tha.t is,the equation is strict1y parabo1ic forψ. There£ore we m&y&pp1y tbe standard−parabo1ic theory to the equation and we obt&in a unique smooth so1ution for t∈/0,η)whereη>O is asu舐。ient1y sma11 time.We need t・・h・wth・・対・t・・…fth・・pP・・b…d・f・・μ・d嘉ψi・・d・・t…t・・d・・…1・ti・・t・ τ∈[0,τ)一The upPer bound Ifor g can be obtained−by apP1ying the maximum princip1e 尤。ψ三ψ一んwhereλ三s a posi七ve su舐。ient王y王arge cons七ant.We趾st王y re命rite the equation as fo11ows: ∂ (㌫十V/二丁∂∂ψ)肌 一ψ二10g 一。4 ∂t Ω We chooseλsuch that supP(£)×一〇,県]1og昔十1≦A We may assumeψachieves its maximum at県>カ。>O and zo∈P(£).Then we have,at(乏。,zo) ・≦旦ψ≦1。。生一≦一・, ∂c Ω which is obvious1y a contrad−iction.Therefore we haveψ≦ψ1、=o=O alnd this gives us the upper bound forψ. We can a1so show the estim&teω(t)肌≦0ωo for some constantσ’>O,τ∈[0,η) with using the Iower bound for the sca1ar curvature ofω(之)一This estimate is equiva1ent t・th・・pP・・b…df・・知・A・i・L・1mm・3.4,w・h…th…ti㎜t・t・、。ω(1)≦0 肌 f・・1∈[0ユ)Byth…t1m・t・t・ω(1)ω・≦(、ま。)f(・・ω。ω(1))卜1、弗・・d・・mb・・mgth… an estilmates,we丘na1}y have0山1ωo≦ω(む)≦0ωo for t∈[0,県).Then,by apP1ying 〃一estimates,Schaud−er estimates and a bootstrapping argument,that llω(之)llo。。(ω。)is uniform1y bounded一£or t∈[0,η)caI1be shown.This estimate gives us thatω(之)→ω(η) in Ooo,which means the so1uもion is extend−ed to the time Z.Since we can obtain the short time existence by apP1ying the standard parabohc曲gory,we iterate this argument ・ndth…1uti・nf・・之∈[0,T)・・nb・・bt・1n・d・t1・・t・ remma3.2. ㌶・(≒尤ツー・(・)・[旧 26 PR00F.Wもhave T一左 左 下一左 ωF。ω・十声・ω千・・≧。ω・・ I−emma3.3.There exists K>0such that (岳一・)1・…一(1)(π1町、)・∼)(帝帆、) where△denotes the La.p1ace opera.tor a」ssocia.ted toω(t). PR00F−In this proof,we putπ≡ 仰w :1P)(£)→ X、、g. Fix arbitrary chosen π∈P(£)withπ(・)1∈X、、。.L・tg∫b・th6m・t・i・・・…i・t・dt・ω・工。、.・・dg(1) be the metric associated toω(τ).Take norma1coordinate systems(ノ){=1,...,w+1for g(t) centered at z and (ωα)α=1,...,N for g’centered−atμ (Sinceω(之)andωx、。、are c1osed一, tb−is is possib1e.).πis given1oca11y as(π1,...,πN)for ho1omorphic f11nctionsπα: πα iz1ゾ..,宕w+1).Here we m&ke our notation simp工e with writing the compone皿ts of 9’・・ん、β,・・dπg≡如α・1・…h・…di・・t・・,w・h…∂蜥(1,・トO,∂ψ、β(ひトO ・・dR(9(之))励F一∂曲(之)4ラ十9(士)α6∂為9(む)乞石∂19(む)、ラ.=一∂曲(亡)1ラ・t・,則9’)α師= 一∂7∂8んαβ十んσβ∂7んαρ∂池、β二一∂7∂8ん、βat g,where R(9(τ))秘τand R(9’)α帥δare the curvature tensors of g(む)on距(∠:)a・nd g’on−X工、g respective1y. L・t・…・、(士)(π*ω・、。、)一9(t戸中抑、β一W…mp・t・・け, △叫一g(1)∼ん抽(9(1)ゴ㌦gπ抑、β) 一R(9(1)戸内払、β十9(1)疵g(1戸(∂耐)(∂1π夕)ん、ザ9(1戸g(1卵(9’)、β、・巾夕炉. Since X’is compact,we have a upper bound of the bisection&1curvature of g’.This means that we have R’(g’)、β78≦Kん、β∼8for some constant K>O in Gri駈ths sense.From the de五nition of叫,we have △・圭≧助(1)戸内仰、β十・(1戸・(1戸(∂州(助πダ)ん、ザ肘 On the other hand,we ca旦。u1ate ∂叫 一 一∂ ’ ∂r一・(1)ユ台・(1)ゴた房・(1)1巾弘一1 一五(9(1)戸内仰、β・ Combining these computations;we have (品一・)1・・山叶÷(1∂㌃1二(・L・(1)W(/耐)(1ユ札) C1aim: 1∂砒一三(1)、、(之)1、(1戸(∂んザ)(ゆ、、。・ 叫 27 We ca1cu1海at the point”, ∼1(亡)一Σ耐∂・榊π夕 4,ゴ,ゐ,α、β ≦Σ1州πダ1(Σ1∂対12)1/2(Σ1伽夕12)1/2 づ,ゴ,α,β た ユ 一(Σ1πgl(Σ1州2)1/2)2 {]α た ≦(Σi巾(Σ1∂州2) ゴ,β {,ゴ,α 一w(1)4冶g(1)ゴ毛(桝)(吋)ん、β・ Therefore our cユairαis proved, In conc!usion,we obtain (品一・)1・・山{・1111[・,・)・ 口 Proof oflLemma3.1: PR00F−Letψ…1og叫一々.When乞;O,we haveψ≦0for some constant0>O. We can compute as fo11ows: (品一・)ψ・κt・一(t)帝ωぺλ品叶λ卜λ・・一(1)㌫ 二一t・ω(1)(舳rK帝ωx、僅、)十ル ^れ ^肌 れ ・λ1・・、着rλ1・千λ1・・等 ψ ≦一αヅω(・)(剛十λ1・g ω(τ)η 一01・g(τ一τ)十σ ・一・一(、み)1㌧1・・、私れイ1・・(H)・・ ≦一01og(T一む)十0. H…w・…dL・mm・3.2,3.3・・舳・f・・tth・1μ→λ1・ξμ一0μ・/・wh…μ・0h。。 a mifom upper bo㎜d血。m above forλ>0su伍。ient1y large.We choseλsu舐。ient1y 1arge such that MrKπ毒・ωx、。、≧o㌫ and一 λ1・・、ポω(、赤)1伽・・ Assume thatψachieves its maximum at zo∈lP(£),then we h&ve ψ・1(・・,1)・1(・・ラ・)イ∫τ1・・(H)μ・α 28 Sinceψis un並。rm1y bound−ed−from above,we have t・ω(・)(帝ωx、、、)≦0㎝P(£)・10,T)・ 口 We introducethe fo11owing p平。pos1tion. Proposition3.2.([Ka1])Let X be a projective va.r玉ety and£be an amp1e invertib1e sheaf on X−For arbitrary given invertib王e sbeafア。n X,there exists a posit三ve integer mo such thatフ=⑭Z⑳m is generated by・9Ioba1sections for any integerη7≧η70. Genera11y,for anyI invertib1e sheaf二く4we have炉(9)皇要(9⑭ル1)where g is supposed− to be a Iocany free sheaf of rankザ(cf.[Har1).From亡his and Proposition3.2,we can rep1ace our invertib玉e sheaf∠:二0ぴ(_1)θ0州with£⑳λ腕for an amp1e invertib1e sheafλ,su駈dent1y1a.rge integer m,and then we may assume that£is generated−by g1oba1sections.Let工1be a ho1omorphic1ine bund1e associated to OpN(_1)and−L2be a ho1omorphic1ine bund1e associated to OpN.Then工…工1⑱工2is&ho1omorphic1ine bund1e a.ssociated to Z.Since we may consid−er£is gene岨ted by g1oba丑sections,the dua1vector bund1e Z*can be considered to be generated by g1oba1sections.We丘x an arbitra.ry p∈X。。g and−cboose two sectionsσユ,σ2∈ム*,which are1inear1y independ−ent at ρ.We de丘neσ≡σ1〈σ2for the correspondingsection of〈2工*.We cons1der a smooth Hermitian metricんエ。n L and use this notation仇for七he in−d−uced metric on〈2乙*, Letひ⊂X、、g be the set whereσdoes not vanish−On this se七,σ1,σ2give a biho1o− morphism T:π試(”)→(”,[σ1(”),σ2(”)])such that the diagram π巾)」㌧ひ・P1 π洲\ /P。 σ commutes,whereρ1is the projection map onto the趾st factor. Let ω。。。・…伽X、。、十ρ姜ω用 be the product metric onひ×理1,whereω珊is the Fubini−Stud−y metric on P1.And−we de丘ne 心…T*ω。。。d, which is a smooth positive c1osed(1,1)一form㎝π訊σ).We may aIso regard島as a ・ingu1a・met・i・・nP(£)一 We wou1d1ike to make sure that the most important1emma in this who1e proof for Proposition3,1is va.1idated: 几emma3.4.There exists0>O such that forカ∈[0,T) t・ω。ω(む)≦0 For the proof of Lemma,3.4,we shou1d prove the estimate be1ow: 29 Lemma3.5.Let3:A2→A2be an invertib1e1ine鉗map,and U:F1→砕be the 三nduced map of projective spaces.Then we have ・*ω服≧λ。λ,1ω。。 whereω用is the Fubini−Study metric on P1,0<λ1≦λ2are the eigenvaIues ofthe matrix B, PR00F.Choose a c1qsed pointρ∈Pl arbitrary,and−at’ρwe take a ho1omorphic vector丘e1d一ξ,which means that it is a section of tangent sheaf万・,with lξ1己、、二1・ Gonsidering a unitary transformation T,we rep1a.ce B by TB.and may assume thatρ i・th・p・i・t[1,O1∈P1・Ch・…h・1・m・・phi・・…di・・t…1…多,wh…Z・,Z・…th・ homogeneous coord−inates on四1.Since the Fubini−Study me虹ic is invariant for the action ofany unitary transformation,we may use ano曲er unitary transformation to assume that ξ=去without1oss of genera1itγThe metric U*ωF8is given by 2 ・* n^∂∂1・・(Σ・勿砺) {,ゴ=1 where6幻are the entries of B*B.At the poinリ1,01∈lP1,we have 、 Σ61μj〈仏Σ6・ゴMZj〈仏 UωF8二 ‘ 6。。lZ.12 6言。iZ.12 Under the assu甲ptionξ・=岳,we have う22 わ12う21 λ1λ2 1/ぼ・螂τ1書1≧λ言 The1ast inequa1ity can be obtained since 611わ12 =う11う22−612う21 621622 is bounded−from be1ow by人1λ2.Reca11thatξwas chosen arbitrary,the resuIt foIIowsl口 Now we app1y the resu1t of Lemma3.5to Lemma3.4. Proof of Lemma3.4: PR00F.At each point g∈X、、g,we wr三te8for the1inear map£q皇A2→A2given byσ1,σ2and0<λ1≦λ2for the eigenvaIues of3*3.In this case,the determinant of 3*3is given by lσほ、一Furthermore,we consider the fo11owing map: ・:P(£。)皇P1→{q}・P1リ1− From the resu−1t of Lemma3,6,this means tha七 ・*嚇≧λ。λ;1軸 30 h・1d・・・…h丘b・・P(£。)£・…yg∈X、、。、 工fnecessar乃we chooseσmuch more smaue工. Then we have お=T*ω。、。。≧0入。λ,1ω。 ・・π{σ)f・…m・・…t・・tσ>0・ Each eigenva1ue is bound−ed−from above uniform1y sinc6σ1,σ2a.re de丘ned over the who!e of X。、g,so八五入2is bound−ed−from be1ow by det B*3:iσ・え刀 Therefore,there exists0>0 such that δ≧01σ1貫、ω… }(σ)・ Let π三1・g(1σ1三五t榊(之))・・th…tπ{ひ). πt・・d・t・…g・ti・・i・丘・ity・1・・g叩)\π訓σ),whi・hm・…th・tw・h…it・m弧i㎜㎜ inπ{ひ)at each五xed time.We are ab1etotakean open setひ’⊂⊂ひ。ontainingρsuch that O<0≦1σほ工・・ぴ fOr SOnユe COnStant(ブ. If we can shρw thatπhas a bound血。m above, then we have on ■(σ戸)・lO,T), t・ω。ω(左)≦σt・ω。6t・おω(む)≦0. Since X、、g is projective(,which means an associated ma.nifo1d is compa.ct),we may continue this argument above at each point,and cover with丘nite number of su田。ient1y sma11open sets.We now prove that H has a bound、 C1aim: There exists a cons七ant0>0such that π≦0・nP(∠1)×10,T) Fix a smooth positive c1osed(1,1)一formωon P(£)一As we compu−te in the proof of Lemma3.3,by taking norma1coordinates for心=ク,we can ca1cu1ate as fo11Qws: (品一・)・・1ω(ト・卵、!台蛎一印代・、声1・紡 wh…Rた!,▽d…t・th・・・…t・・…d・・…i・・td・・i・・ti・・with…p・・tt・ク・ From the co叩putation above,we have the fouowing estimate: (岳一・)1…ψ(ト 毛、、1(乏)(岳一・)・w(1)・㍑ll 一、、、1(カ)柵蛎一、、銭1(広)(柵械・物」甘言) 1 . ≦ t、、、(乏)・w蛎 SinCe We haVe {杭州。〆、Φ、吋旭、、、ウラ、冶す tW(む) 31 We apP1y it toω=お=T*ωp、。d. Then曲e curvature tensor ofωp、。d has a1ower bound一: R秋(ω。…)≧ρ毒(腕)1ラρ婁(腕)た1+ρ姜(腕)”姜(肺)ザ0ρ1(9X、、、)が(9X、。、)灯 f・…6・・t・・tOd・p・・di㎎・・1y・・th・・・…t・…fg。、。、,wh…th・i・・q・・1ity・ft・・・… is meant in the sense of Gri舐hs. This means that we have for a uniform constantσ ♂ゴg牌、ラκ王(①)≧一0t・棚ω(t)t・ω(・)帝ω・、、、・ Then we obta.in (品一・)1・・t・1ω(1)・・1・一(1)帝帆g・ We㎡ention曲e fact thaいheとurvature of the metric on〈2L*is bounded by some mu1tip1・・f帝ωx、、、: 肋(ん。) 一戸∂∂1・gん工 ≦oπ紅ωx、、、・ This imp1ies that we have 戸∂∂1・glσ1貫、 ≦0帝ωx、、、・ Therefore we have (品一・)1・・(l111五t・1ω(1))・・t・一(・)帝ω凡、・・ 市here we used Lemma3.1. When亡二0,we have a1ready had the estimate 1σ1貫、t・洲≦α ApP1yi・gth・m・・im・mp・i・・ip1・(・リAH1)t・(品一△)(π一10)≦O,w・h… π一to≦科一。≦α Therefore we obtainπ<0. N…,w・・h・wth・tf・…y・∈X、、、・h・di・m・t…fth・丘b・・πル)t・・d・t・・・・… む→T. 工emma3.6.There existsσ>0such that for anyπ∈X。、g,any広∈[O,T) di・m、(。)π正ル)≦0(T−1)1/3 PR00F.Fix”∈X、、g a.rbitrariIy.Letρ,q be arbitrary given two points in P1呈 π長ル) Since7r紅ωx、。、=0on each丘ber,we have 人一(1)十干テむ一…(・一1)・ 32 Fix a background−K註h1er metric∂on P1,&nd−write g for the metric g(之)restricted to P!. Then,sinceふ1ω(亡)has the bound0(T_t),we have ∫ t・09ω≦σ(T一之). 1 ’ On七he other hand,we have a1ready known that we have tr5g≦0from Lemma3.5. Now wg may assume thatρ,q1ies in a£xed coordinate cbartひ⊂1P1二A!U{○o} with coordinates(u,?」)∈R2(We here identi丘ed an open set in Al with one1n C1皇R2.). And a1so we may assume p co肛esponds to the origin in R2and q.to曲e point(吻,0)wi他一 uo>O.We putη≡(下一)1/3>0andtake it su田。ient1y sIna11in order to assume that P三p,伽。]x(_η,η)is c㎝tained inひ、Write here the Euc1idean metric g肋、,which is uniformly equiva.1en七to the丘xed metric3on2)i−e.,ther♀exists0>0such that 0.1脆伽、≦5≦0g亙、・nの. We can c㎝ユpute1n P as fo11ows: ム!㌦・舳一 ル・舳 ≦ ・∫ t・39δ ユ ≦ 0(T一左)。 This impiies that we have for sonユeηo∈(_η,η) ∫㌦・(州)べ(・一・)一σ(H)2/3・ SupPose thatρo and qo are the points represented by (0,り。)and (uo,〃。)respective1y Then we ca1c凶ate d。(ρ・,q・)≦ ズ(凧可)(舳)伽 ズ(河凧可)(舳)仇 ≦ (∫㌦^)列1/2(ズ山)(ψ)1/2 ≦ 0(ト君)1/3. Using the two esti㎜ates七rδg≦0andク≦0g肋。,we a1so have d。(ρ,ρ。)≦ωδ(ρ,P。)≦ω。、皿。(ρコρ。)一0η:σ(トt)1/3, d、(q,q。)≦0州,q。)≦ω、、仙。(9,9。)二0η=σ(ト1)1/3. Therefore we obta.in d、(ρ,q)≦d、(P,P。)十d。(P。,q。)十舳。,q)≦0(T−1)1!3. This te11s us that we have the resu1t since p,9was given arbitrarγ 33 3.3 Convergence resu1t as a metric space 工emma3.7.Le㍑ピ里(∠:)x P(∠:)→盟be the distance function induced by the metric g(広).There exists a sequence of ti蛆es{ち}such that々→T asづ→○o and一{φ、}converges tO a COntinuOuS funCtiOn dT. PR00F.Fro1m Lemma3.4,we have for t∈[0,T),z,ω∈狸(∠1) 伽,ω)≦市d。(・,ω)≦0. We choose z、ノ,ω,ω’∈〕P(£)arbitrary and we have l∂。(・,ω)一dμ,ω’)1≦1伽,ω)一t(・,州十1d工(岩,ω’)一∂元(ノコω’)1 ≦ゴ毛(ω,ω’)十dt(・,ノ) ≦市(d。(ω,ω’)十伽,ノ)). This means that the functionsφ 招(∠:)×要(Z)→R are equ三。ontinuous with respect to the function do on要(£)×呼(£),where do is the distance function ind−uced−by the m−etric g(C)エgo.Hence we can app王y the Asco1i−Arze1益曲eorem,which te王王s us that there ex三sts a sequence{む}{such that{φ、}乞。onverges uniform1y to a continuous function 伽:P(∠二)×P(£)→RaSづ→OO.口 Since the convergence is uniform in P(∠:),dτsatis丘es non−nega」尤iveness,symmetry,and the triang1e inequa1i印A1though we need to check the equiva1ence:z二ω⇔伽(z,ω)=O in order to vahd−ate that伽is a distance function.Actua.uy,we can con趾m it in the next argument, Let dx、、、:X.eg×X.eg→R be tbe dista.nce function on X.eg induced by the metric ㌣・。。。・F・・mL・mm・3ユlth・・…i・t・早・…t・・t0>0…hth・t d、(・,ω)≧市d。、、、(π。・(・),π。小))f…1し,ω∈叩). This teus us that we have ψつω)≧市d。、、、(π四・(・),π要・(ω)い…11・,ω∈㌍(Z). Ad−d−itiona.11y,there exists0〉O such that d・(柵(P),π刈))〈α・、。、(ρ,q)b・・11ρ,q∈X。。、・ CombiniI1g this a.nd−the previous Lemmas,we ha寸e for a11z,ω∈P(£) 伽,ω)≦di・m、(圭)π長加・(・))十di・m、(1)紬剛ω)) 十伽{π要・(・)),π{榊(ω))) ≦20(ト1)1/3+市∂。(π訓榊(・)),π{π炉・(ω))) ≦20(ト1)1/3+ωx、。、(榊(・),榊(ω)). Therefore we have 伽(・,ω)≦ωx、。竃(仰・(・),榊(ω))f…11・,ω∈要(£)・ 34 Base(i on these estimates,forρ,9∈X、、g,we de趾e ゴ・、、、,・(川)三d・(〆,9’)f・・〆∈π{ρ),q’∈ポ(9)・ When we choose another p”∈π訳(ρ),we obtain 0一市d。、、、(π。・(〆),π四・(ρ”))≦d。(〆,ρ”)≦ω。、、g(剛〆),π廻・(ρ”))一〇, i.e.,伽(〆,ρ”):0.Therefore,we have dT(P”,9!)≦d。(〆,9!)十伽(〆,ρ”)=d。(〆,9’). Likewise,we have d。(〆,q!)≦伽(ρ”,9’). This ind−icates that the distance function dx、。、,T is we11−de丘ned−and uniform1y equivaユent to the distance function dx、。、・ Proof of Proposition3.1: PR00F.First王y,we characterize七he Gromov−Hausdor笠。onvergence. Let(P,伽),(ρ,dQ)be given metric spaces, The Gro阻。v−Hausdor丘dist弧。e伽H(P,ρ)is the in五mum of au6>0such that satis丘es the fo11owing cond−itions.There exist mapsφ:P r》Q aI1dψ:ρ→P such that ldp(ρ1,ρ2)一dQ(φ(P!),φ(ρ2))1<6 for a11ρ1,ρ2∈P, ldQ(q。,q・)一価(ψ(q。),ψ(q・))1<・ £…11q。,q・∈ρ, 加(ρ,ψ・φ(ρ))く・,dQ(9,φ・ψ(9))<・f…11ρ∈P,・11q∈Q. We chooseφ=榊and the㎜apψ:X、、g→四(Z・)satisfyingφ・ψis the identity on X。。。・ From the de丘nition of dx、。、,T,for any211,z2,z∈四(£),we have ld。、(・・,・・)一d・、、、,・(π{・・),π訊・・))H凶、(・・,・・)一桁(・。,・。)1→o as4→○c and φ、(・,ψ・φ(・))≦di・m。(。、)π{π。・(・))→0・・1→・・一 LikeWise,we have£or.”1コ物,⑦∈X。。g ldx、、、,ル・,π・)一山也(ψ(・・),ψ(・・))Hd・(ψ(・・),ψ(・・))一φ壱(ψ(・・),ψ(・・))1→0 asゼ→○o and・dx、、、,T(π,φoψ(”))=O・This mea・ns that we have d・・((P(£),d老壱),(.X、、。,dx、邊、,・))→0 ・・4→… Therefore(P(∠1),φ、)convergesto1 iX、、g,dx、、、,T)intheGrom−ov−Hausd−or迂sense。口 35 4 The weak K益hIer−Ricci且。w on projective Ca1abi− Yau variety 4.1 Surgery虹r曲e K益h1er−Ricci且。w Recau that we assumed the smooth positive c1osed一(1,1)一formωo∈う。c1(0炉(エ)(D。。))_ αoc1(0胆(エ)(Do))satis丘es Ca1&bi sy皿metry con砒ion.As we see in sub−section2.2,which means thatωo is invariant under the action of the group G1皇σ(ノV+1)/Z1=ひ(ノV+1)、 In this case,ωo can be d−enoted in the fonowing form on eachσ乞x P1; ω。:α。帝!*ω州十月痂。(ρ)フρ=1・g((1+1・(4)12)1ξ12) where7r荘Nム*ω珊ind−ica.tes the pu11−back of the Fubini−Study metric on PN and uo is七he potentia1function which sa。勺is丘es some cond.itions we have a1rea.dy seen. We have the so1ution of the K託h1er−Ricci且。wω(む)on里(C)for亡∈[O,T)where T is the五nite singu工肛time,which starts withωo.Since the so1ution is continuous in之, ω(乏)sa.tis丘es Ca1abi symmetry condition as weu.Tもerefore,for each左∈[0,T),there ex三stα士>O,6t〉O,a smooth potentia}functionψand sn1ooth funct三〇ns,for3∈[O,cc), 叫,。(・):lO,・・)→股,ひ。,。。(・):[O,・・)→理…h七b・t㎝…hσ壱×砕 ω(卜α。帝/*ω冊十月痂オ(ρ),ρ=1・g((1+1・(毒)12)1ξ12), 1∫1(ρ)>O,ul’(ρ)>0f…11ρ∈(一・・,・・),・nd { σf,・(・ρ)二叫(ρ),ひ尤,。。(ゼρ)=仙士(ρ)一6tρ, σ1,。(0)>O=ひ;,。。(0)>0・ Sinceω(T)a1so satis丘es Ca1abi symmetry cond−ition,there exists a smooth potential function uτon X、、g satisfying cond−itions above.In一曲e previous section,we showed that 沼(∠:)converges to X、、g as the metric space under the K註h1er−Ri㏄i iow」n the proof,we conirmed each丘ber ofπ洲was co11apsed」as左→T to become a pointξ({),o∈A1∪{oo}.If ξ(1),o…0,thenρ≡一〇〇・Ifξ(づ),o≡oo,thenρ≡○o・In both cases,we can not determine the1imi七ing血etricω(T)sincewehave∂∂吻(ρ)=uタ(ρ)∂∂ρ十州ρ)∂ρ〈∂ρ.Wetherefore may assu皿e thatξ({),o≠0,oo andξ(ゼ),o∈A1\{0}.Then we compute ∂δ1・glξ(壱),。120. Therefore we have onひ4×{ξ(乞),o} ^∂∂吻(ρ)=・午(ρ)^∂∂ρ刊壬(ρ)月∂ρ〈∂ρ =1み(ρ)^∂∂1・g(1+1・(毛)12)十・4(ρ)^∂ρ〈∂ρ =州ρ)帝/*嚇刊4(ρ)ρ∂ρ〈∂ρ. We reconstruct the potentia1function吻so as to regard as afunction on who1e X in the fonowing way: 吻(!)イ(ρ),llザ札・, 36 Thenω(T)can be written with this expanded−function他ナas fouows: ノ・十戸∂∂吻(ρ),l1皇i二{ξ(州}・ 一(・)一 Therefore we may assume tha七this rea1semi−positive c1osed(1,1)一formω(T),which is posi七ive and smoo1コh on Xreg,is equiva1ent to乙*ωF50n X・ Now we wou1d−1ike to study on surgery for the K或h1er−Ricci且。w with the丘nit6singu1ar time T.The£o11owing proposition te11s us that even though the initia1form is supposed to besemi−positive,we canobtain aun1que so1utionofthe K身h1eトRiccゴ丘。w,Wewi11app1y the resu1t of the proposition to the degenerated formω(T),which wi11be considered−to be the initia.1form of the丘。w. Propos此ion4.1.Le七X be a projective Ga1abi−Yau variety with1og ter理inaユsingu1arities and乙:X・→炉M be a projective embedding of X,Letωo be a rea1semi−positive c1osed (1,1)一form on X,positive and smooth on X、、g and equiva1ent to the pu11−back of the Fubin皇一Study㎜e牛ric byむ。n X,Then there exists a unique wea」k so}ution of the weak K量h1eトRicci且。w on[0,oo)×X,which satisiesω∈0oo([O,oo)×X、、g),ω(亡)has potentia1 f…ti…〃,・)∈P服(X,ω。)∩川X)f・・1∈[0,・・)…hth・tω(之トω。十ρ∂和 and { 品ω(上一冊(ω(τ))・・[0,・・)・X。。。, ω(0,・)=ωo On X. Moreover we have the resu1t thatω(之,.)converges to the unique singu1ar Ca1abi−Yau metricωσγin the c1ass[ωo]in the sense of currents oI1X and−in Oo。一topo1ogy on X、、g. Westartwithnatura1conditionswhichisprescribingthesingu1arityanddegeneracyof the initia.1data.tha.t wi11be studied a1ong the Monge−Ampere且。ws consむucted under the assumption in Proposit三〇n4.1.From the isomorphism Pた(X’)皇P化((X’)ん)wbere(X’)ん 1・・・・…とi・t・dp・・j・・ti・・m・・if・1d,iti…茄・i・・tf・…t・・b・・・…p・・j・・tiv・1m・・if・1d at丘rst and曲en we app1y obtained resu王t fro二m it to the smooth projective variety.For this reason,一we1et X be a projective manifo1d−at the moment. Conditioln1,O:Let工→X be a big and−semi−amp1e ho1omorphic1ine bund−1e over X. Le尤η∈c1(ム)be a rea1smooth semi−positive c1osed一(1,1)一form on X.Assume thatηat worst vanishes a1ong a projective sub−variety of X to a丘nite od−er,th就is,there exists an eぜective Cartier d−ivisor五〇〇n X such tha七for any丘xed−K註h1er form汐, η≧叩亙。1貴亙。ハ・…血・p・・i・i・・・・・・・…0拶 where加。 is a smooth hemitian metric on the associated ho1omorph圭。 hne bund−1e四〇]. As we see in section2,亙。 can be expressed1ocauy by a hoユ。morphic function d−e五ned on eachσαwhich is an open cover of X.These function§give us transition functions{㌔β}. S・w・m・y・…id…p・i・({ひα},{1αβ})whi・h・…t…t・・h・1i・・b㎜d1・■3月。ぼ亙。一 (んE。)α(3亙。)α(恥。)αonひαis a point−wise norm squared−of8亙。with respect toん亙。・ Herewecon丘rmthat such anηexists a1エthetime−S三nce^s assumed to besem三一amp1e, that is,ムmこム図… ⑭乙:mムis g工。ba.uy generated for suf冒。ientエy1arge positive integer 37 m,fo「a』ny”∈X,there existsσ∈∬0(X,γηム)={a1I ho1omorphic sections onム肌}such 七ha七σ(”)≠O−The1inear system lm工i=距(∬o(X,mム))induces a ho1omorphic map り1打、エドX→CPd伽,where dm+1=dim∬o(X,m工).This gives us 1 η一一月∂∂1・g(1σ。,州2+…十1σ。,・一(皿)12),、 m for any basis{σ∴,o,σm,1ゾ_,σ肌,d、、}of∬0(X,m工). Constructed一ηa.bove sa.tis丘es細 。onditions in Gondition1.0. Cond−ition2.0:Letθbe a.smooth vo1urr1e form on X.Let亙=Σ婁二1α壱凪and F。= Σ3。。16ゴ巧be e亜ective d−ivisors on X,where凪and巧・are irred−ucib1e components with simp1e norma1cross虹gs.And we assumeα壱≧0,0<∼<1.LetΩbe a semi−positive (n,n)一fomonX・u・h’th・t 人Ω・・,Ω一附吋1θ where3石and8F are the de丘ning sectioI1s of.E and F,ん亙&ndんF are smooth Hermitian metrics on the ho1omorphic1ine bund1es assodated t〇五and F. Wewi11seethecondition6ゴ∈(0,1)makesΩanintegrab1e(n,n)一formonX.Mloreover, 暑i・i・工ρ(X,θ)f・…m・ρ>1・ lLemma4.1.([Ka1])Let X be a norma.1projective variety and D be a nef,big Cartier divisor on X.Then there exists an e丘ective Cartier d−ivisor亙such that D_ε亙is amp1e for any su舐。ient1y sma.11positive numberε. PR00F.There exist an amp1e Cartier d−ivisorλand−an e昼ective C別tier d.ivisor亙such that m。.D=A+亙for suj五。iently large positive integerηγThen D_ε五二ελ十(1_η7ε),D is amp1e for alny suf巨。ient1y sm−a.11ε>0、 ・ 口 We app1y this Lemm−a to our projective manifo1d X.Since we assumed工is semi− amp1e and−big ho1omorphic1ine bundユe over X,there exists an e丘ective d−ivisor亙。n X such that L一ε固is amp1e for any su舐。ient1y sma11ε>0,where回1is a ho1omorphic 1ine bund1e associated to the divisor.Therefore we can ta.ke3倉,ん庄such that η君,、三η・ε^∂δ1・・峨万・0・・X\カf・…固・i…1・・m・11ε千0, where8重is a de丘ning sect三〇n of the divisor万andん百三s a smooth Hermitian metric on the Iine bund1e〔亙]. Letωo be a rσaI smooth c1oデed一(1,1)一form on X such thatωo≧0ηfor some constant C’>0.I.t ho1d−s tb−at ω唐、、三ω・十ε^∂∂1・g1城重・0㎝X\舳…田・i…1y・m・11ε・0・ We de丘ne the support ofa d1visor0=Σ乞φD{: ・・p・D…∪{D仏≠Of・・…川 { 38 Since we1ater con−sider the exceptiona11ocus亙∬c(π)as亙,we may assume that the supPort of亙。ontains that of亙。,亙and F,i,e., supP万∪supPFUsupPEo⊂supP五1, LetΩbe the v〇五ume form satis丘es Condition2,0and一∫xΩ二[ωo1η…乃after normahza− tion.Letθbe a五xed K包h王er form on X. Let ω、…ωo+3汐>O for.8∈(O,1ユ. And−1et Ω≡1軌…θ 「1’「213ポ、十・・ be the perturbed−smooth positive vo1ume form on X,whereθis asmooth positive vo1ume form on X1We consider tbe fami1y of・Monge−Ampさre且。ws as fo!lows: { 知州,・。一1・・(ω8+平葦w・)肌 ψ、,、ユ,、、し一F0 By app1y虹g standard parabo1ic theory,we obtain a unique smooth so1ution for each 3,r1,グ2∈(0,ユ]and£or左∈[0,η).whereη>O is&su舐。ient1y sma11time.By making the same argument in sub−section3.2,we have the fonowing resu1t. L・mm・4.2.F・…y・,・。ラ・。∈一 iO,11,thg・…i・t…iq…m・・th・・1・ti・岬、,、、,、、・fth・ Monge−Ampさre且。w above on p,oo)×X. We needto noma1izethe且。wto get the00−estimate.We de丘ne ブ 目ωε「=㌦・…人Ω・・,・・コ ・・d・・,・1,・・…1・g考、、L・・ψ・,・・,1・≡恥,η,ゲ1・・,w・ Thenthe Monge−A血pさre丑。w above is equiva1ent to the fo11owing fami1y ofthe Monge− Ampさre且。ws: { 細,・。,・。一1・・(ωs+守葦W・)L・・,・。・。 ψ、,、、,、、し一・:O The constants c、,、、,、、are uniform1y bounded−for3,r1,r2∈(O,1]and−they apProach O as 8,γ1,ザ2→0, 4.2 Some estimatesおr the proofofProposition4.1 I・emma4.3.There existρ>1and0>O such that for a1け1,r2∈(0コ11 人(Ω汁・・ 39 PR00F. We have 人(Ω着「2)ρθ人(叱…)州い・)一ρθ ・小雌θf・・・・・・・…t・・t・… H…lw・…th・f・・tth・tf・リ・lw・h…ん,1]ガ物・十・・Th…f…w・・h… 〃8・1青二θ<十・・f…W・1withハ・lf…1リTh…f…,1fw・・h・…ρ〉1 su担。ient1y sma11we have 入(Ω宕「2)ρθ・… 几emma4−4.Letφ、,、エ,、。beω、一p1urisubharmonicfllnctionssatisfyingthefo11owing1〉1㎝ge− Ampさre equations: (ω・・ρ∂∂ψ・,・・,・・)㌧寸、、Ω・・,・・ { maxxφ。,。。,。。=0 f・・…h・,れ,γ。∈(0コ11. Thenφ、,、1,、、are unique weak so1utions of the equations for each18,グ1,r2∈(0,1]such that φ、,、、,、、∈P3一σ(X,ω、)∩ム。o(X). PR00F.Let K Ωr、,、、・ Φ、,、1,、2三 W、,、。ω二 Since we showed in Lemma413that for any sエ皿。oth positive vohme for二mθ,we have Ω、。,、、 ∈工ρ(X,ω、)f・…m・ρ>1。 θ Therefore we have Φ、,、ユ,、、と工ρ(X,ω、) for someρ>1. We rewrite the equation: (ω、十〉⊂了∂∂φ、,、、,、、)犯=Φ、,、ユ,、、ω二, { maxxφ、,、。,、。・=0・ Here we introduce the fonowing resu1t deveエ。ped mostエy by S−Ko1odziej: Over a cユ。sed K三h1er manifo1d(X,ω),the equation consid−ered is: { (ω十〉FT∂∂u)η::Φω肌, maxx覚二〇 40 wbere伽is an upper semi−continuous function on X withω十vq∂∂刎≧0(i,e.,u is ω一P工urisubharmonic),亜is a non−negative funct三〇n王ies in工戸(X)£or someρ>1satisfying ムφωη:∫÷ωη.Then there exists a unique weak so1ution in P3∬(X,ω)∩ム。o(X)(cf. [Koj1],[EGZ],王ST2],[Zh2])一 Getting back to our equations,which satisfy∫xΦ。,ブ王,。、ω二}。==ムω二,亜。,。ユ,。、∈〃(X) for someρ>1are non−negative andφ、,ブユ,、、a.reω、一p1urisubharmonic,There£ore we may a.pp1y the Ko1od−zieゴs resu1t above and−conc1ude tha.tφ、,。、,、、are unique weak so1utions in P5∬(X,ω、)∩工。o(X).一Hence we have the fo11owing工。。一estimates: llφ、、、、、、、1州x)≦0f・…y・,・・,・・∈(o,11・ 口 Lemma4.5.There exists0>0such that fo縦118,r王,r2∈(0.11 11ψ。,γ、,、、l1州・,。。)。x)≦o PR00F.Letψ≡ψ、、、一ユ、、。一φ、,、・。,、。.Then we have ∂ (ω、十ρ∂∂¢、,、王,、、)η 一ψ・=10g ∂左 eC岳1「ユ1『2Ω、、,、、 (ω、十ρ∂∂φ、,、、,、、十ρ∂∂ψ)肌 =1Og 一 (ω、十ρ∂∂φ、,、王,、、)η Letψmin≡minxψ(乏,.).Assume thatψacb三eves its minimum at zo∈X,i.e一,ψmi。: ψ(左,zo).We have at the point zo∈X ∂ (ω、十ρ∂∂φ、,、!,、,)n 一ψ㎜n≧1og 一 :・O ∂τ (ω、十ρ∂∂φ、,、工,ヅ、)η Therefore,we have ψ(之,z)≧ψ(広,zo)≧ψ(0,zo):一φ、,、、,、、(0,zo)≧一0 for some constant0.This gives us that ψ、,、1,、、≧φ、,、、,、、一0≧一σ for some constant O since we have the uniξorm1ower bound ofφ、,、1,、、. TheuniformupPerboundforψ、,、1,、、canbeobtainedsimi1ar1y・.ロ エemma4.6.There existsλ,0>0such that for之∈[0,oo)and8,ヅ1フγ2∈(O,1] ∂ 沖舳・0一エ・・喘貧ポ 41 PR00F.Let ∂ ψ’・.房¢・舳・伐篶バλ1・・峨届・ L・tD、,、工,、、…ω、十ρ∂∂ψ、,、エ,、、・・パ、,、、,、、,△、,、1,、、b・th・g・・di・・t・・dL・p1・・i・・ operators with respect to the metricお、,、互,、、. When之コO,by choosing su伍。ient1y1argeλ,we have ωη固言、十γ・1 ヅ(0フz)二1og前ポ月・小カ1ゼら舳≧・σb「a1’z∈X Now we ca1cu1ate (岳一礼舳)ツーλ・岳∼。バ^・・㌦、(λ・叫・旧111・・1・l11彦)・ λ2ω・・λρ∂∂1・・舳広一λ2ω后,去・” ≧〃f・・λ・u舐・i・nt1y1・・g・,・ny・∈(O,11, sinceω亘⊥>O forλsu担。ientユyユa・rge,Therefore we have ,λ (品ぺ、…)ヅ・λ・・∼、山・品沁一・ ・・(。∴)㌧・λ21・・働∴・λ21・・。÷ ” 1 ” 十2λ21・・Ω、1,、、I。庖iλ十λ3’・・I3君トλ21・・Ωブ、,、、イ ≧ 一λ2ψ’一0, where we used that forμ>0we have’ ハト→λ16gμ_0μ1/ηis uniform1y bounded from above for some constantλchosen sui五。ient1y1a.rge. Wemayassumethatψ■achievesitsminimumat zo∈X,T≧to>Ofor any0<T<oc. App1ying the maxiInum princip}e,thenψ{≧一σat(to,zo).Th6reわrd,we have ψ一≧一0on(0,co)xX. Since we h&veψ「t=o≧_σa.s we11,we fina11y obtain ψ一i≧一0on[0,・・)×X. From Lemma4.5,we conc1ud−e曲a七〇n[0,oo)×X, ∂ 玩¢W・≧十λ1・・13白11看・ Let ∂ ψ十一ブ州・瓶舳一λ1・・1眺・ W・…h…th…並・m・pP・・b・・ムdf・・細、,、、,。、by・pP1yi・gtb・・lmi1・…g・m・・tt・ ψ十. 口 42 Lemma4.7.There existσ,α>0such that forむ∈10,oo)and8,r1,r2∈(O,11 o _坦 t軌,・。,・。≦郊亘1ん虚亡・ PR00F.Let ψ≡t1・g・帆,・ユ,ゾ瓶,/ユ,・。十A1・g13店ほ亘・ Sinceψ(01z)=λ1og i8角ほ.,ψ(0,宕)achieves its maximum at some zo∈’X\盾and−we 亙 haveψ(0,z)≦ψ(0,zo)≦σfor some constantσ>0−We compute for左∈[0,ηwhere 0<T<○o is arbi七rary taken.As we see in the proof of Lemma3,5,we have (岳一・舳)1・・帆,・。・σ批灼灼H・・・・・・・…t…σ・… By using the esキimate above,we have forλsu舐。ient1y1arge ∂ _ (ガ△W・)ψ≦一・・棚畠,・。,・。(λ2ω・・λ^∂∂1・・i・重11亘一榊) ・1・…^,。。バ吟,。、,。。・^ が ≦一札W。θ・σ帆・・一…λ21・・働、 8,「!グ2 〃 十λ21・g Ω、ユ,、、 十0 ・一λ((1一)1)ぺ、;9η)㍉・^,。、,。、)÷ 5,「1,「2 ・・t以ハ、・・(お甘 3グ1グ2 ・λ・1・・働ヂησ(働享7孔ユ 8,τ1,γ2 5,γ1,T2 ”’ ・λ21・・Ωザ、,、、鮎二一λ31・・峨1・0 ・一σ(。≠n)㍉軌_片十H・1・・峨面 5,τ1,「2 where we estimated at the second inequa.1i尤y for su舐。ient1y1a.rgeλ λ2ω・・λ戸∂∂1・g舳亘一C〃≧λ2ω亘,ギ0〃≧〃 sinceω垣⊥>O看。rλsu笛。三ent1y1arge,and a.t the third inequahty,we used the estimate: ヨA 1 ・ ” t軌舳・(、.。)1(t・1州・汐)η一ユ芳寺「2ラ a」nd choseλsuf五。ient1y Ia.rge such that λ((1一)f)★(。ヂn)㍉帆_)★イ(、ヂη)㌧・・帆,。1他 5,rユ,r2 5,r1,7■2 ・・(働ヂη)㍉^,。、”)占 8コ「1,r2 43 Furthermore,we used the fact that forμ>0we haveμトトλ1ogμ一0μ1/犯is uniforlm1y bounded−from above for su舐。ientIy1argeλ.Th呈s te11s us that we can choose su舐。ient1y エarge.4such tbat λ・1・・の≠n・(。ギη)去・・ 8,「1,ブ2 8,「1,r2 We chose Asu飼。ient1y1arge such tbat λ・1・・、÷、1帝!・1・・筈映十;l1峨・・ We may予ssume thatψachieves its maximm!atτ≧之。>01zo∈X一\亙for any 0<T<○c.At(広。,zo)we h&ve oγ^ 邸W・≦σ箒’「2(σ一一31・・13重11重)肌■1≦0・ for some constant OT>0depends on T.Therefore,we baveψ≦0on(0,」r]×X,Since ψ(0,z)≦0for any2∈X,we obtainψ≦0on[0,η×X−In conc1usion,we have for 芭∈[O,η・・d・,ヅ。,・。∈(0,11, 0T _迦 t・、ゆ、,、ユ,ザ、≦・丁晦!ん.㌧ E Si…0・T…w…h坤…bit…ylw・・bt・i・th・i・・q・・1ityf・・之干[01・・)・ 口 Rgmark4.1.For any compact set K⊂X\亙and any K註h1er form汐。n X,we have O trρ、,、、,、2≦σfor some constant0=0K>0. We h血ve an intention that we wou1d1ike to app1y the parabo1ic Schauder estimate (c£[Fr],[GT])to嘉ψ、,。1,、、in order to have its02・α一estimate and−to obtain more higher derivative bound−s.In th三s regard一,we shou1d prove七he』 獅??煤@estimate with using the estimate in Remark4.1. lLemma4.8.For any compact set K⊂X\刀there exist constantsλ>0and0>0 …hth・tf・・む∈10,・・) 入 11ψ。,。ユ、。、10・(κ)≦σθ丁・ P・・…N・t・th・t働、、。、,、、一ω。十ρ砺。,。王,。、・W・d・五・・η…ηト(ω、)αλ(お、,。1,、、)ヌβ、 We can compute for anyvector丘e1dγ=γ王∂互as fo11ows: (▽、,、、,、、)mト(▽(ω・))。乃:∂、、ト}篶一∂、乙w+(F(ω眉))島κ :篶((ω、)αδ∂㎜(ω、)ザ(園、,、1,、、)αδ∂m(の、,、エ,、、)!否) ニイ(((▽、,、、,、、)、、η)η一1)αい And we have the fouowing computation, ゆ・,・、,1、)石ゴαグR(ω・)1ゴαβ一郎・,1・,・・)榔α一R(ω・)ゴ石βα 一一椰β十∂石(F(ω月))9β =一∂雇(((▽。,。王,。、)ゴη)η一1)㌔, 44 wh…ゆ・舳)舶一(∼就)ηδ郎舳)バ・・打茄,(r(眺))茄…Ch・i・t・任・1・y血b・1・ ・f▽、、、ユ灼,▽(眺)…p・・ti・・1γ Take巧二(δ。,。、,γ、)石ゴ,then we have (帆,。ユ〃)伽・・ (▽(叫))m∂石∂凧、、〃 一{(㌦)・(㌦)ポ(・惧))・(㌦)1ゴ1 (お、舳)石、(((▽。舳)。η)グ1)、 Let 8 ≡ (へ、、〃)ゴテ(牝、、〃)銚(寛島、、灼)師(ψ皐、、〃)伽(み、i灼)戸、ラ (お、舳)戸(働、舳)β、(軌舳)師(((▽、舳)。η)ヅ1)、(((▽ぺ、!〃)、η)η一1)生 i(▽、舳η)η一1i2. And we co㎜pute (△、篶〃)3 一(δ。舳)mi(お。舳)μβ(働氏。、∴)7δ(△、。、灼)(((▽。舳)。η)η一1)β、(((▽舳)1η)η’!)㌦ 十(賃。舳)m王(働、。1〃)μβ(働。舳)7δ(((▽。舳)。η)グ1)β、(△。舳)(((∀も。、㈹)1η)η一!)μα 十1▽、舳((▽、舳η)η‘1)!2+凧、1〃((▽、舳η)η一1)12, where 1▽、グ、,、、((▽、,町,、、η)η一1)12 =(働、,、ユ,、、)⑳(働、ハ,、、)仰(δ、出,、、)βδ(δ、舳)η、 (㌧ユ吻)炉(((▽、。ユ約)ゴη)グ1)αβ(▽乳、ユ〃)す(((㌔ツユ灼)、工η)η一1)㌔ The next equa1ity fouows by commuting covariant derivatives(▽、,、、,、、)々a皿d(▽外ヅ王,、、)ア: (△、舳)(((▽、,、、灼)ゴη)η’1)7、一(△、舳)(((▽、舳)ゴη)ヅ1)7、 一一助(∼工〃)μ7(((▽邑。、㈹)1η)η一1)μ、十地似。ユ灼)、μ(((㌦、,。、)ゴη)η’1)7μ 十肋(∼1吻)ゴμ(((▽W、灼)、η)η一1)7、, 45 wh…肋(∼ユ〃)、β一(叫舳)珊(軌舳)、η!.Th・・w・h… (△民ブ、織)3 :(お、舳)mユ(働、舳)μβ(叫、工,、、)恒 (△舳)(((▽ら。、灼)。η)η一1)β、(((㌦、灼)1η)η’1)μα 十(働、舳)肌{(叫、1他)ρβ(働、舳)・δ (((㌧エ〃)㎜η)η一1)β。(△Ψユ灼)(((㌦ユ〃)1η)η一1)μα 十1▽、ハ,、、((▽、舳η)η一1)12+阿、舳((▽、舳η)ヅ1)12 +(((▽舳)。η)η一1)β、 /(沁)mτ(㌦)l!肋(㌦)・δ(((㌦。)1η)パ)㌦ 一(寛、舳)mユ肋(働、舳)μβ(の、舳)・δ(((㌔、、灼)互η)ザ1)μ、 十舳(軌舳)mτ(㌦)ll(∼。他ゾ(((㌦他)1η)パ)㌦/ Since ∂負(((▽。舳)ゴη)η’1)㌦=一R(叫舳)励㌧十R(叫)ノ、互, WehaVe (△、,、ユ〃)(((▽、舳)ゴη)η凹1)㌧二 (▽、,、王灼)ρ∂酉(((▽、∫、,、、)ゴη)η’1)㌧ 一(▽岬王〃)ρR(叫、灼)酌㌧十(▽。舳)叩(叫)励㌧ 一(▽。舳岬(恥舳)伽一(▽外τ、灼)ρ恥。)肋ユ ー(“舳)ゴ郎。舳)ρ負パ(“^他岬(ω。)肋工 一(㌦1㈹)ゴ肋(∼、〃)∴(▽。舳岬(叫)㍊ We can rewrite as fo11ows: (△、グ1〃)3 =一 i働、舳)m!(お、舳)μβ(島、舳)7δ /(㌦。)・肋(㌦)!(((㌦灼)1η)パ)㌦ 十(((㌦){㍗(㌦。)伽(㌧)乃 十1▽、灼,、、((▽、舳η)η■1)12+1▽、,、1〃((▽、舳η)η一1)12 +(((㌦〃)。η)η・1)β、 /(㌦・)肌τ(∼)l/肋(∼ハ((㌦)岬)パ)㌦ 一(0、舳)m{肋(み、、〃)ββ(①、,、、,ヅ、)7δ(((▽到、王,、、)1η)η一1)μα ・肋(㌦)・ア(∼。灼)l/(㌦戸(((∀舳)1η)パ)㌦/ 一(叫、、,、、)m∼(叫、、,、、)ρβ(へ、ユ,グ、)佃 /(㌦)伽)卿!(((㌦灼)1η)η山1)㌦ ・(((㌦η)一1)グ1)㌦(㌦灼)1・(叫)伽!} 46 Reca.n we de五nedη=(ω。)へ1*働、ハ灼,therefore we have ∂ 房(((㌦ふη)パ)ト ∂ 玩(一(叫榊(叫)1・・(∼仰)㌦(∼灼)1・) ((㌦∼品(㌦ル)べ㌦戸島(㌦加) α8∂ (▽乳、1仰)m((叫、、灼)一(へ、、,、、)2ざ) ∂之 一。∂ (▽島、、,、、)肌(η一η)αi, ∂t ∂ ・∂ 一。∂ 一。∂ 玩(∼他)ヅ(叫)δμがト(∼灼)砂(η房η)卜(η房η)δβ, ∂ ∂ 一(∼、灼)β㌧一(一∼、他)βb工 ∂ ∂t ∂亡 ∂カ 一(ヅ1一η)㌦(恥∴)此 ∂ 一(η’ユーη)βb. 砒 Gombining these with岳∼灼=_地。(㌦〃)十地。(Ω^〃),we have 一。∂ (η一η)αユ=一助(①、ハ灼)王α十肋(Ω、ユ織)エα ∂尤 and ∂ 玩(((㌦他)・ηパ)トー(㌦灼)・五乞・(∼〃)1α・(㌦他)・肋(㌦)1α・ By using these caIcu1ations,we obtain ∂ 一8=・ ∂尤 (∼、〃)m旦(叫、〃)μβ(∼、〃)7δ /品(((㌦㌦1)パ)㌧(((㌦。》1)パ)㌧ ・(((㌦ル1)パ)㌧品(((㌦ふ1)パ)㌦/ 一(((㌧1灼)。η)η一1)㌦ /(パ岳1戸(沁加㌦戸(((㌦・1)パ)㌦ 一(㌦戸(パ払(㌦凧(㌦ル1)パ)㌧ ・μノ(恥ル(パ岳1戸(((㌦ル1)パ)㌦/ 47 Combinin−g these computations,we have the fo11owing genera1heat equation: (い_,。、)・ ■▽、,、ユ,、、((▽、,、、,、、η)η一1)ト1▽、,、、,、,((▽、,、1,、、η)η一1)12 +(働、,、、,、、)mユ(お、,、、,、、)ρβ(園、,、王,、、)巾 /(い・,・。,・。)(((㌦)一1)1一・)㌦(((・・,_)ll)1一・)1一 ・(((㌦,。。)…1)グ・)!、(品一肌,・。)(((・・,・ユ,・。)ll)1一・)1−/ −/(1一・岳1・肋(棚。,。、。))㌦。,・、)β/(働。,。、,・,)領 一(働一・)・τ iヅ1品1・月ψ一))、、(働・一)・δ ・(①。,。。,。。)咋。,。ユ,。。)μ/(ヅ・品/・帆…,。。)プα/ (((▽。,γ、,。、)。η)1ブ!)㌧(((▽。,。王,。、)1η)η一五)㌦ ■▽、、、ユ,、、((ウ1,、、,ザ、η)η一1)ト1▽、,、、,、、((▽、,、1,、、η)η’1)12 ・(①・,・。ヨ・。)肌τ o(▽・,τ。,・。)す・(ω・)卿!・(▽・,τユ,γ。)・肋(Ωτユ,γ。)、β/(((▽・,・。,・。)1η)r・)∼ ・(働・,㌘。、・。)mτ(((▽・,・ユ,・。)・η)グユ)μδ{(▽舳,・。)明(ω・)票、μ・(▽・,・。,・。)伽(Ω・ユ,・。)一1/ +・(Ω・・,・・)伽τ(軌,・・,・・)l/(軌,舳)・し(軌,・・,・・)伽Ω・・,γ・)l!(お・,・・,・・)恒 ・(働・,・王,・。)咋・,・。,・。)l/肋(Ω・。,・。)・δ/(((▽・,・。,・。)・η)η一1)㌃(((▽・,れ,・。)1η)ザ1)㌧ since we have (1一・岳1・肋(・。,。1”一))β、一町1,。、)λ/ and一 (い・,・ユ,・。)(((㌦)ll)1一・)㌧一(㌦)“)、伽!・(・舳)州Ω・。,。。)、1・ Therefore there exists0>0such七hat (い舳)・・■㌦,。,((・。,舳1)ヅ・)1・■㌦((・・,舳1)1一・)i・ 十08+0 ・i…月(ω、)す、、β1,左1・(Ω、ユ,、、)豆㌦・丘・・・・・・・…f・・・・…,ヅ。,・。∈(・,・1. Reca11the fo11owing computation: (い財ユ,ヅ、)・・ψ易。1,。、一(軌ハ”)帆)烏!ゼ(園舳)1 一(ω、)巾、,、、,、、)Φ(・。,、1,、、)’た(▽(ω塙))乞(園、,、、,、、)、1(▽(ω・))ラ(働、,、1,、、)物 48 and the esti1mate: σ 川 七rω、働、,、ユ,、、≦eT 0n any compact set K⊂X\亙. GoInbining with au estimates above,we have the fo11owing resuユts:there exist su脂。ient1y 1argeα.,β>O such that (岳一・舳)1一㌔島舳・一・{・σ a.nd (岳一・,・。,・。){・σ{・α By choosing su舐dentユy1&rgeβ〉α,we have for su舐。ientIy工argeλ>O, (岳一・,。。,・。)(・一等・十λゼ㌔。,_)・一・{・α 2β 2α We may assumethat e−T8+λゼTtrω月優、,、ユ,、、achieves itsmaximum at(乏。,zo)∈10,η× X\亙,6o〉0,where T is arbitra.ry chosen.App豆ying the max主mum princip王e,we have at (乏。,・。) ・■衛(む。,・。)≦0. Therefore,for su担。ient1y largeβ>αand for any老∈[0,T] 2β 2α 0 εて8+λe−Tt・ω苫お、,、ユ,、、≦oεT As a resu1t,we丘nany have for a11亡∈〔0,oo)on any compact set K⊂X\E λ 8<0ε丁 since T wa」s given arbitrary.Hence we have λ ll¢。,γ1,。、ll・・(K)≦σ・・f・・乏∈[0,・・)・ 口 In consequence,we obtain021α一bound(α∈(0,1])fgrψ、,ツユ,、、on any compact set K⊂X\亙、This imp1ies that the metric(働、,、、,、、)仰has a0α一bgund(α∈(0,1])on K. By appIying the parabo1ic Schauder estimate to岳ψ。,。ユ,。、, ム(知,。1苅)≡(∼、灼岬み,・バ品(品ψ_,γ。)一・, we have ∂ 0 萩ψ舳。。,、(、)≦ε丁虹乏∈正0,oo),(α∈(0,1]) ・・…f・…3(K)∋細。,。、,。、一1・・(ω5+{篶州)れ一・舳,ヅ。狐・¢・,τ。,・。∈・5(K)f・・ む∈(0,○o).This imphes that the metric(0、,、1,、、)吻has a02・α一bound(α∈(O,11)on K. 49 App1ying the Schaud−er estimate,then we have岳ψ、,、ユ,、、∈σ5(K)and一ψ。,。、,。、∈σ7(κ) for尤∈(O,○o).Iterating this process,we have ∂ 0 房ψw・。。一,一(。)≦eTfo川∈N,fo「¢∈[Oヨ。o)・ This means that we have for anyε>0, llψ、,、1,、、l1州、,。。)。K)≦0ε,Kf・…m…n・t・nt0ε,K>0・ Exhaust X\亙by compact set・瓦with K{⊂K壱十・and U乞K{=X\亙、Con・ide・a sequence{ε4}乞such thatε毛→0as乞→oo,Letルτ{≡[ε乞,一〇〇)xκ乞.For each4,there exists 06>0such that llψ。,。、,。、ト(M壱)≦qf…,・・,・・∈∈(o,11・ Chodse subsequences { 句,1,(?・1)4,1,(r2)壱、1 as they converge on M1, ・1,・,(ヅ・)1,・,(グ・){,… th・y・・nv・・g・・nM・, ● . ・ ・1,ゴ,(ザ・)1,ゴ,(・・)1,ゴ・・th・y…v・・g・・nMゴ。 工terating this process and picking up the diagona1subsequence: 8づ、乞,(ヅ1)4,{,(r2){,壱 as they converge onλ41,M2,...,M{、 Inthismanner,weconc1udethatweh&veasゼ→○c ψ。、,、,(。1)壱,、,(τ、)、,、→¢i・0◎。一t・p・1・gy・・(0,・・)・X\亙・ remma4.9.↑he fo1王。wing monotonicity c㎝ditio宜s ho1d forψ、,、1、、、on[0,oo)×X. (1)ψ・,・1,・、>ψ。,。i,・、fg…y0<γ・〈小 (2)’¢。,・、,γ、<¢。,。1,ぺ・…yO<・・<小 (3)¢、、、、,、、<ψ、・,、、,、、f…ny0<・<・!. PR00F・Letψ三ψ・,。1,・、一ψ。,ぺ,。、・Thenψ(Oデ)=0and・ ∂ (ω、十戸∂∂ψ十ρ∂∂ψ、,、三,、、)肌Ω、i,、、 一ψ二10g 一 ∂亡 (ψ、十〉⊂了∂∂ψ。,。i,。、)η Ω・1,r2’ Letψmi。≡minxψ,and we have 岳1…・1・・;訣÷・ f…nyO<・。<ぺ 50 and we haveψ>0. We can prove2in a simi1ar way.Next,we show3.Letψ≡1¢、。,、1,、2一ψ、,、、,、、.We have ψ(0,・トO.Letψmi。…minxψ.We ca1cu1ate ポ (ω1+ρ∂弧、、十ρ∂∂ψ、,、、,、、)η 一ψm1n : IOg _ ∂乏 (ω、十戸∂∂g、,、ユ,、、)れ (ω、十(・L・)θ十ρ卿、,、ユ,、、)肌 ≧1Og 一 (ω、十ρ∂∂ψ、,、ユ,、、)・ (ω、十ρ∂∂ψ、,、ユ,、、)η > 1Og 一 (ω、十ρ∂∂ψ、,ヅ、,、、)η = 0 forany0<3<3’.Tbenwehaveψ>0.口 Let 一ザ1im1im(1im¢、,、、、、、)*, 5一÷01r2→0 r1→O where we de五ne ∫(・)*≡工1m・upア(・). δ→0B。(・) As we see above,¢、,ク、,、、is the increasing sequence as rユ→0−Therefore,(1imザユ→oψ、,、ユ,、、)* denotes巾e upper semi−continuous enve1op.It is anω、一p1urisubharmonic function an(1is dec干easing asγ2→0and5→0.This means that hm。、→o(1im。、→oψ。,γ、,。,)*is a1so anωゴ p1urisubharmonic function and−1im、→o1i㎎、、→o(1im、王→oψ、,、1,、;)*is anωo−p1urisubha亡monic funCtiOn. We notice that ダ≡ψ・n10,・・)×X\E. This is the so1uti6i of the MongトAmpさre且。w1 { 如一1・g(ω・十字卿)η・・[O,・・)・X\亙, {一〇=0bnX ・u・hth・}∈0o。([0,・・)xX\亙),ψ,・)∈炉(X)∩P8∬(X,ω・)f…11¢∈[0,・・). Next,we nged to show the uniqueness of the so1u七ion with using an〇七her parameter 0・δ〈1.L・tω!δ)三(1一δ)ω。十・仁ω、一δω。≧0.Th・…tf・mi1y・fM㎝g・一Ampさ・・ 且。ws have smooth so1utions in0◎o(p,oo)x X). { 紬1。、一1・・(ω≦δ)十与竿,・・)L・。,。、,。、, ψ!ジ1,、、1、一。二0 F・・…h・,・、,ヅ、∈(0,l1,{ψ!ジ1,、、}。〈δ<1i…m・・thf・皿i1yi・δ・・dw・h…11mδ。。ψ!ジ1,、、一 ψ、,、、,、、i・砕t・p・1・gγW・…dt・・h・wth・岬!δ)i…虹m−1yLip・・hit・i・δ1・t・・.F・・ its proof,we make a preparation in the fonowing Lemma. 51 Lemma4.10.There exists0>0such that for8,γ・1,r2∈(0,11,左∈10,oo), ∂ σ1・・舳亘一・≦紬!。,τ。≦・・ P・….L・t△!ジ1,、、b・th・L・p1・…p…t・・with…p・・尤t・ψ1,、、…ω!δ)十ρ∂∂凶1,、、. W・・・…㎡p・…h・・知ジ、,。、!、、。一〇・・d (品一・!!、吻)(紬1”)一二・・働鰍王、(ω・)・・. By app1ying the maximum princip1e,we obtain 払1他・知!1他1・一・一・・ Note that 1脚1,、、l1州・,。。)。・)≦σ can be obtained−by the same way in Lemma4.5. Let ψ三七12 m、,、、・側1,・、一λ1・・1・l11店, where the constant A>0wi11be chosen su租。ient1y large1ater. We can co皿pute as fo11ows: (い!?1他)ψ 一が2・ ラ、バ・・園!ジ、、(θへ)・λ・1・・(寺=1:)η 一れλ2一一λ2・w・・t・優9!ユ,、、(・2ω!δ)・λ月∂∂1・・舳角) 一1・1・・ i劣肌一!・1・帝…蝋、(へ!一・) 一λ2ψ・瑚?、,、、一λ31・g峨春一ηλし汽,。、,・、 ≧ 一!・1一・一・1・・ i烹、・・((劣篶、)去 ・1・1・・(ω フ)η1隻11宗、。1,種 ≧’一λ2ψ一0 We choose A su舐。iently1arge such thatω鮎>0, ,λ λ2ω講≧σω!δ)十七へ。, ,λ 1・1・・ i劣∴、一・((兇、)去・・ 52 and !・1・ シ簑11+,、1,蓑二・一・ for some constantσ>0. We may assume thatψachieves its ma虹mum aげ≧左。」>0and zo∈X\亙for any 0<T<oo.Therefore we have at(τo,zo) ・・(岳二・!!1他)ψ・一λ・ザσ・ This gives us曲e resu1t thatψis uniform1y bounded from be1ow and ・1・州后一・・払1,、、 for sonユe constant(フ>0. Th…i・t・・…fψ!δ)≡1im、、→。(1im、、→。ψ!ジュ,、、)…X\力f…,δ∈(0,11・・dit・ ・m・・th・…ψ!δ)∈円10,・・)・X\君)∩円10,・・)・X)…b・g・i・・dbyth…m・ argument as before whenδ=O since we can obtain for each compact set K⊂X\五,the eStimate i㈱1,、、1州・,。。)。・)≦0・わ…m・・…t・・10・>0, Th…f…ψ!δ)i…m・・t11・・1・ti…fth・fg11・wi㎎且・w: { 細δ)一1・。(一≦δ)・苧・≦δ))L・、・・X\万, ψ!δ)1、一。一〇 From the Oo。一estimate,we can a1so consid−er ψ(δ)…1i邸!δ)∈樹[01・・)・X\カ)∩州0,・・)・X) 8→0 which so1ves the fo11owing equa.tion: { 品ψ(1)一1・。(一εδ)十孚1(δ))れ・・X/・, ¢(δ)1。一。二0 酎・mL・m一皿・4.10,w・・…h・wψ!δ)測dψ(δ)・・…逓・・m1yLip・・hit・…tim…i・δ ・・…h・・mp・・t・・tK⊂X\君.H・…¢(δ)・・・…g・・t岬・・此㎜1yi・ム。。([0,・・)・κ) asδ→O. Lemma4.11.There exists0>O such that on[0,○c)×X,for any8∈(0,1],0<δ1< δ2<1, 1ψ!δ2Lψ!δ1)1≦σ(δ・一δ・)(1−1・g18重1三重), a皿d 1¢(δ2Lψ(δ1)!≦0(δザδ1)(1−1・g18重1貧者)・ 53 Proof of the uniqueness: PR00F.We assume that thgre exists another so1ution〆∈σo。([0,oo)×X\亙)∩ 工。o([0,・・)・X)∩P雌(X,ωo)・就i・丘・・ { 細㌧1・g(ω・十与酬帆・・[0,・・)・X\万, {一。=0onX We choose su舐。ient1y sma11ε’>0such tha“≧ε’ωo,For su舐。ient1y sma11ε>0 wbich depe皿ds on b−ow sma11ε’is,1e七 砒、,、三ψ、1Lε・1・g1瑚貫.∈σ◎。(1O,・・)・X\亙) 亙 and(u、,、)min三minx u、,、、Note that since¢、and〆are uniおrmiy bounded in工。o(X), we may assume u、,、achieves its minimum就some point zo∈X\亙.Then we ca1cu1ate ∂ 一(u、,、)mi、 ∂左 (ω・十ρ∂伽’十・{(ザε∫ω。)十(εノωrε肋(ん庄))}十戸∂∂(・、,、)mi、)肌 :10g (ω。十ρ∂∂〃 (ω。十月∂∂〃 ≧1Og (ω。十ρ∂∂〃 =O sinceε=ε(εノ)is chosen su舐。ient1y sma1エsuch tha.tωo_ラ地。(ん看)>O−Since we assu二med 1蛸君≦1・批・・…Ii・gth・H・mi・i・・m…i・ん店1w・h・削・,111一・一一ε・1・g1城カ≧01 combining these resu1ts,we have u、,、≧0.By1ettingε→0,we obtain〆≦ψ、,and− second1y1etting3→0,we肋a11y have〆≦ψ. W・・・…h・wψ∫≧ψ・L・tり1㍉’一ψ(δLδ21・g峨重・・d(り1)肌i・三mi・洲・Si… ψ(δ)and〆are uni£orm1y bounded inム◎o(X),we may assumeりδachieves its minimum in X\且Here we choose0<δ<1su茄。ient1y s血a1ユsuch thatωo一δ捌。(ん彦)>0. Then we have ∂ 一(ωδ)mi。 ∂む ((1一δ)ωo+〉⊂了∂∂ψ(δ)十δ(ωo一δ五化(ん看))十〉⊂了∂∂(ωδ)mi、)η 1Og ((!一δ)ω。十月∂∂ψ(δ))れ ((1一δ)ω。十ρ∂∂ψ(δ))肌 ≧ 1Og ((1一δ)ω。十。q卿(δ))η :0. This gives us ・Lψ(δLδ21・・舳亘≧中(一δ21・・峨君)・ From Lemma4.u,for any compact set K⊂X\亙,there exists OK>0such that l¢(δ)一ψ1≦0KδBy using曲is inequa1ity,we obtain£or each compact setκ, ψグ≧什叫・(一δ21・・舳庄)一0・δ・ 54 Exhaust X\亙by compact sets K;withκ1⊂κ壱十・and U{一κ{=X\且Gon・ide・a sequence{δ山such thatδ乞→0as{→oo.Then we choose the diagona1sub−sequence as we d−id before.By1etting4→0,we have〆≧ψon X\五一In conc1usion,we have〆=ψ and this indicates the uniqueness of the so1ution. 口 4.3,Convergence to the so1ution of the degenerate Monge−Ampさre equation We prove the fo11owing estimateわr細。,。、,。、・ lLemma4.12.There existsσ>O such that for t∈[0,○o), 0 ∂ イー一≦一ψ、、、1,、、≦σ、 亡 ∂む PR00F・Letφ、,。。,、。be the unique so1utions ofthe−fo11owing Mlonge−Ampさre equations: (ω、十〉二子∂∂φ、,、、。、、)η=εC宮ル・・Ω、ユ,、、, { nユaxxφ、,、ユ,、。こ0. We have the unifom estimte forφ、、、、,、、inム。。(X). Let ∂ ψ一三杯W・十柵舳血枇ψ whereλ>0is&constant chosen su伍。ient1y large1a七er.We compute (岳一瓦_)ツー(λ・1)紅バふ・机心、(叫・ρ/弧、ユ約) ・一(λ・1)1・・暑・灼・・(豊叶一・ 81「11「2’ 8グユ1「2 > 一〇’ We chooseλsu固。iently1arge such that (λ・・)1・・芸・Lσ(豊一)去・・ 5,「ユー「2 8,「1,「2 By・pP1yi・g七h・m・i㎜mp・i・・ip1・t・(品一△。,。工,ザ、)(ψ山十之0)≧0,th・・w・h… ψ一十之0≧ψ1t=o≧一0. Since we ha・ve曲e五〇〇一estimate forψ、,、、,、、and一φ、,。、,。、,we therefore obtain for之∈P,○o), ∂ o 一ψ、,、、,、、≧ro−r ∂亡 む W・・・・…i1yh…th・・pP・・b…df・・細、,、ユ、。、by・pP1yi・gth・m・・im・mp・i・・ip1・t・ (ポ△、,、、,、、)細、,、、,、、≦O.Th・・w・h… ∂ ∂ ωη 玩¢舳≦玩ψ舳山=1O・Ω、:、、一C舳≦0 f…nプ∈[O,・・). 55 Fro叩the esもimate above,for anyδ〉O there exists0δ>O such that_0δ≦ 細、,、1,、、≦0f・…y君∈[δコ・・). Deinition4−1−Letψ∈工。。(X)∩P8∬(X,ωo)be the unique so1ution of the Monge− Ampさre五〇w1 知一1・g(ω什字∂ψ)几・・[0,・・)・X\E, { ψlt=o:O on X Letω三ωo+〉二工∂牝.Fix arbitrary givenδ>O.For any乞∈(δつ○c),we may assume ・…1・・紗・1・・計12働㌫ユ,・、・・…1蝸・・df・・旧0ノ・・)・・d・b・・1…1・m・・…b1・ あr之∈(δ,σo),s三nce we have曲e estim就e_0δ≦品ψ。,、1,。、≦0for左∈(δ,oo). We here de丘ne f㎜ctiona1s: { ひ(舳)…古〃・g晋ωη、 ■肌 巾・,・・,伽ω・)≡㍍青ユll:2町1,。、 Whenむ=O,since曲ere is a尤worst1og po1e si㎎u1arit1es虹the integra1, ル(・,・);一・)≡÷ム1・・等一1 iS We1Lde丘ned. We can ca1cu1ate for丘xed8,r1,ヅ2∈(O,11 岳μ(ψ一;ω・)一÷人・・ヨ・・み・・ん ・÷ルー孔・吟一11_ 一ル;い1品1一・1払・・]ん ^㌦嘉ψ・一1ま,、,り㌦… Andμ(ψ(亡,・);ωo)is bound二ed from above for each広∈[0,oo). Jensen,s inequa1ity,we have 巾(t,・);ω。)= ★〃・・舌Ω [ω]η1。。[ω]」。 > ’ 乃 篶 where recan that1ω1η=[ωo]7L=%. 正emma4.13.Fix乏∈(O,○o),we have 1im リ(ψ、,、、,、、(左, ・);ω、);レ(ψ,・);ω。). 5,rI,r2一与0 56 Furthermore by.using PR00F.Since there are at worst1og po1es in each integra1and一,as we mentioned−above, η ω 1・時ω肌11・g/1二t毒2孔,・。・…b・・1・t・1yi・t・g・・b1・f・…yl∈(01・・)1f・・…y・・伍・1・・t1y sma1I6>O,there exists a su舐。ient1y sma11tubu1ar neighborhood.亙、of五such that ÷ム1・・告一れ・1,÷ム1・牛11一・1・ On the other hand,since¢、,、、,、、converges uniform1y toψinσo◎(X\カ、),there exist suj五。ient}y sma118、,r,such that for any8∈(0ラ8、),r1,r2∈(Oコ7、) ㍑、瓦篭ト・バれ、瓦1・・告一一・1・ Therefore we have for any8∈(0,8、),?二1,r2ξ(0,r、) レ(¢、,、、,、、(t,・);ω、)血小(tデ);ω。)1≦・一 Sinceε>0wastakenarb批rary,wehavetheresu1毛.口 Let▽,△be the gradient and Lap1acian opera.tors with respect toω、 remma4.14.Le}be the unique so1ution ofthe Monge−Ampさre且。w: 一 知一1・g(ω・十干鮒・・[O,・・)・X\盾, { {一。二0・nX Thenレ(ψ(t,.);ωo)is decrea.sing for t∈(0,○o).」 PR00F,For0<左1≦¢2,on any co1mpact set K⊂X\E μ(ψ、,、1,、、(左。,・);ω、)一中、,、ユ,、、(τ・,・);ω、) 一生ハ㌦ポ∵灼ひ ・出㌦ポ∵灼ひ By1etting3,ザ!,r2→O we ha!ve (1) 帆・);一・)一ル(1・ジ);一・)・÷ハ吟ン・l Therefore ひ({デ)刈≧レ(炉(左・ラ・);ω・)・ Thi・m・…ひ(ψ・);州i・d・・・…i・gi・む・ .口 57 Here we reca11tha七〇≦リ(ρ(む,・);ωo)≦0<十〇〇.By1etting K→X\万in(1),we have ハ、店i吟に州・十… This te11s us tha尤we have (2) 人\亘吟ン・・よ・・… Let(▽o)be the gradient with respect toωo・ 工emma4.15.On any compact set一κ⊂X\五: ・去・1(・・)岳1(1コ・)1二・…1… PR00F.Fix compact setκ⊂X\且 Otherwise supPose that there existδ>0, ・王∈K・nd左五∈(O,・・)s・・h七h・t勾→・… 1→・・, 1(・・)岳か1)i二・/わ・…1・ By picking up a subsequence,we may assum−e thatむ十1_ち>1for a11Z≧1.Since we bave the estiInate for any comp&ct set(K⊂)K’⊂X\E, ll¢、,、1,、、l1州t・,。。)×Kつ≦oKl for some cons七antσK。,we obta.in the uniform1y bounded geometry of棚、,、、,、、on K’a1ong the Mlonge−A甲pさre且。w,that玉sラwe have 0ω、≧寛、,、、,ヅ、≧σ・1ω、・・K’. for some constant0>O1By1etting5,ヅ1,グ2→O,we bave 0ω。≧ω≧0−!ω。・nK’. Hence there existηδ>O,アδ>0such that for some constant0>0 吟(1・)に・舳・ll(1−/l,叶/1)刈(・バ1)⊂κ・ This1eads to the contradiction against(2). □ Lemma4.16.Let帥,.)…ψ,.)_maxx帥,.).Tben帥,.)converges toψ。。と P冊(X,ω。)∩ム。o(X)∩ぴ(X\亙)・・τ→・・in0◎。(X\亙)一n・m・ndZo。(X)一n・m, which so1ves the fonowing d−egenerate Monge−Ampさre equation: (ω。十ρ∂伽。。)㌧Ω, { ’ maxxψ。。=・O. 58 P・…一N・t・th・t(ω。十ρ∂∂ψ)㌧θ納,同州。,。。)X。)≦0・・dw・h…tb・ ・・tim・t・1例1州。,。。)。K)≦0ε,Kf・…y・〉O,・・y・・mp・・七・・tK⊂X\刀。 As we d−id in the previous subsect三〇n,we consid−er the exhaustion of X\亙with compact ・・t・{K毛}壱・ndpi・kupth・d1・g㎝・1・・b・・qu・n・・{ψ(ち,乞)いu・hth・tち,圭→・… 1→・・, 帥1,壬)→ψ。。・・づ→・・in0。。・nX\亙, ψ。。∈P8H(X,ω。)∩ム。o(X)∩goo(X\亙)・ From Le皿皿a4.15,on any compact setκ{⊂X\亙,as乞→oo ∂ ∂ ω肌 (▽o)一ψ(ら,パ)=(▽。)一{,乞,・)=(▽。)1・g一 →O. ∂之 ωO ∂τ ωO ΩωC This te11s us that we1ユave (ωo+〉⊂τ∂∂ψoo)η=eoΩ on X\彦for som−e constant0. Since we assumed thatムΩ。。1ωo]η,the constant must be zero.We next observe the convergence in工。o(X)一norm,We app1ythe stabi1itytheorem whicb−wi11appear in Lemma 7.3t・th・f・11・wi・g・q・・ti…:(ω。十月瞬)㌧赤Ω・・d(ω。十ρ伽。。)㌧Ω. We may assume that we have maxx(ψ_炉。。)=maxx(ψ。。_ψ)、Then we have ユ ∂ 一 1¢一一州・)≦σ1・討一11町x,Ω)・ F・・mth…tim・t・i・L・mm・4.12,w・h…th…if・・m・pP・・b…df・・知f・・1∈(0,・・)一 We丘x6>0arbitrary given.Then there exists a compact set K、⊂X\亙for the丘xed ・・・・…t…ム\。、(み・・)Ω≦ll・・…1∈(・,・・)・・・・・…i…η・・・・・・・… ル、1θ品Ll!Ω・妾f・・剛・η・i…w・h…細→0・・X\カ・Th…f…,f・・… 之>ηwehave 1ε品一111岬)・人\瓦(θ品ψ・1)Ω・人1木11Ω… By co皿bining these estima.tesコwe五na11y obtain 1 llψ1。。!1州x)≦0・雨 for anyカ>η.Since6>0was arbitrary given,we conc1ud−e thatψconverges toψoo色s 吃→○o in刀。o(X)一norm。 口 4.4 Proof of Proposition4.1 Let乙*ωF3∈c1(乙*0ぴ(1))be the pu1I−back of the Fubini−Stud−y metric by乙,which is a reaI semi−positive(positive and smooth on X、、g)cエ。sed(1,1)一form.Leいr:X’→X be the reso1ution of singu工arities.Again,we remark that invertib1e sheafs on X’can be identi丘ed with ho1omorphic1ine bund1es over associated−projective皿an逓。1d(X’)んsince w・h…th・i・・m・・phi・m∬1(X’コ0妄’)雲∬1((X∫)戸㌧01。’)・)・ 59 We consider the pu11−backηノ…π㌦*ω珊∈c1(π㌦*0pw(1)).一Since a ho1omorphic1ine bund−1e工。ver(X’)んassociated to the invert三b1e sheafπ㌦*0榊(1)is semi−amp1e and big, i.e., ・・(工)≧0,・。(Z)η>0, there exists an e任ective Ca.rtier d−ivisor亙’on X’such毛ha.t suppβ’;亙”c(π),c1(ム_6回1)>0 for su舐。ient1y sma116>0, where[刀っis tbe hoIomorphic工ine bund1e associated to the div三sor〃.Hence,η’satis五es C・・diti・・L0:η’≧013〃1三五、θ’wh…θ’i・・丘・・dK義h1・・m・t・i…X’13亙・i・・d・丘・i・g section of〃andん亙・is a smooth Hermitian metric on脾’1. Let our in批ia1m−e位icωo be a.rea1semi−Positive c1osed(1,1)一form on X,Positive and− smooth on X工、g and equiva1ent to乙*ω冊㎝X.We de五neωる…三π*ωo,which satis丘es Gondition1.O as we11. Since X has工。g termina玉singu1arities,we have the re1ation ρ q K・にπ*K・十Σ蝸十Σ6ゴ㌃1 {=1 、ブ=1 where{易}婁=1フ{巧}3=1are irred−ucib1e components o£亙”c(π)with simp1e norma1cross− ings,α乞≧O,0<6ゴ<1,We may assume that supP万’UsupP亙UsupPF、⊂五”c(π)、 Let Kx’/x = Kx∫/π*κx be the rela.tive canonica.11ine bund1e&nd its1oca.1de丘ning f…ti・・…b・w・itt・…th・J…bi…fπ,th・ti・,iti・1…11yw・itt・…1城、18・ぱ near exceptiona1divisors,where3刃,3F are the de五ning−sections and加,加are smooth Hermi七ian metrics on the ho1omorphic1ine bund1e associated t〇五,F respect玉ve1y.Let Ωbe the Calabi−Yau vo1ume form we co鵬tmcted from our numerica11y triviaI canonical divisorκx.We de丘neΩ’三π*Ωthe pu11−back ofΩ,which is a smooth semi−positive voIume form on X’with zeros a1ong風。f orderα乞and po1es a1ong巧一〇f order6ゴ,i−e.,Ω’ satis五es Gondition2.0. Therefore we can app1y our argument in the subsection4.2,4.3to Proposition4.1. Proof of Proposition4.1: PR00F.By apP1ying the prev三〇us arguments,it is possib1e for us to obtain the fact th・tth・・…i・t・…iq・…1・七i㎝〆∈ぴ(10.,・・)・X’\肋・(π))ラ〃,・)∈炉(X!)∩ P8∬(X’,ωξ)for a11広∈[0,oo),sa.tis丘es the Monge−Ampさre且。w二 { 知1−1・。(小与鮒・・10,・・)・X’\趾(π), {一。=0・nXグ. Moreoverψ’≡ψ’(亡,・)」maxxψ’(τ,・)converges to a so1utionψ」∈0oo(X’\亙”c(π))∩ Loo(X戸)∩P8∬(X’,ω6)of the(iegenerate Monge−Ampさre equation (ωる十〉〔τ∂∂ψ」)几=Ω∫. 60 Sin・・ωる二π*ω。二0・n…h・・m・・t・d・・mp・n・・tinth・丘b…fπ,ρ∂∂〆=0 ・・…h・㎝n・・t・d・・mp・…t・棚b・・bt・in・d・ndth・nw・h・v・〃,・)三・・n・t・nt(広) on each component−This means tbat〆naturauy descends toψ∈0oc(圧O,co)×X、、g), ρ(之,・)∈工。o(X)∩P3∬(X,ωo)for a1㍑∈[O,oo)sa.tis丘es ■ { 知一1・g(ω・十字∂ψ)帆㎝10,・・)・X、、、, 一t=o=0 on X一 ψ…ψ,・)一m・x〃(之,・)・・n…g・・t・…1uti・Woγ∈0o。(X、、。)∩ム。o(X)∩P服(X,ω。) of the degenerate Monge−Ampさre equation: ω8γ三(ω。十月∂∂牝γ)π:Ω, SinceΩisCa」ユa・bi−Yauvo1umefor㎜onX。。g,ωoysa・tis丘esR乞。(ωoγ):・OonX、、g− We showeれhe existence and convergence resu1t in Proposition4.1.Fina11y,we observe the uniqueness in the fo11owing a.rgument: The Kahユer−Ricci且。w is equiva王ent to the fo11owing equa」tion: { 戸∂∂(ポ1・・(ω雫帥)一・・・…。, ψし二〇:・0 on X. Let ∂ (ω。十〉⊂了∂∂ψ)肌 G㌧…一ψ一10g ∂左 Ω Then it sa.tis丘es G士(・)∈0oo(X、、g)for eachオ∈(O,oo)and〉⊂了∂∂G亡=0on X、、g.Since X is supposed to be normaI and then codimX,i㎎≧2,for any two generic points z1and z2 0n X,there exists a curve7joining z1and z2without intersect三ng X鼻ing.Co皿bining these, w・h…qミ1・・n・尤・nt(左)・n…h・・…whi・hd…n・tint・・…tX,i㎎虹X.Th・・w・h・v・ Gt(z1)=G{(z2)since Gオis constant aIong the curveγThen we have G看≡constant(カ) on X。。g.In other words,we have on−X。、g, ∂ (ω。十ρ∂∂ψ)η 一ψ=1・g +C・nSt(τ) ∂t ・ Ω Bym・di£yi・g岬ψ一グル…t(・)伽,ψ・・ti・丘・・th・Ml・・g・一Ampさ・・丑・w: 如一1・g(ω〇十字∂ψ)几・・[O,・・)・X、、、, { 帥一。=0onX. This gives us the uniqueness of the so1utionω(広)of the unnorma1ized weak K註h1er−Ricci 昼。wfort∈[0,○o)、口 Now,we五na.11y proved Proposition4.1−Therefore,in the next section,we can show Lemm&1,1with Ca1abi symmetry by apP王ying the resu1t of the proposition.As we mentioned in section1,we wiI1see the conjecture can be proven under the particu1ar &ssumption for the虹itia三metric. 6ユ 5 Exemp1i丘。a声ion ofan a価rmative resu1t br Conjec− ture1.1 5.1 Quick summary ofthe previous s㏄tions We sta士ted the K捌er−Ricci且。w on the s㎜ooth projective variety炉(£)with th6initia1 positive smooth c1osed(1,!)一form satisfying Ca1abi symmetry6ond−ition: α0 60一α0 ωo∈ろ。c1(0町)(D。。))一αoc1(0炉(z)(Do))forαo,う。>0w1th一≧ >0 N 2 Weshowed(里(£),∂t)convergesto(X。。g,dx、、、,7。)inthe Gromov−Hausdor猛sense asτ→T whereTisthe五nitesinguユarti皿eo舳e丑。w.We二maymakethesameargument asinthe previous sectionwithω(T)astheinitia1sem三一positive(1,1)一formon X,sin.ceω(T)satis丘es the same conditions asωo does in Prφosition4.1.As we con丘rmed,we can continue the K註h1er−Ricci且。w st別ting with the degenerated metricω(T).And the descended so1utionω(む)on X forむ≧T a.1so satis五es Ca1a.bi sy血metry cond−ition.Therefore,for each カ∈ 一丁,co)tbere exist a potentia.1function叫二=ψ(ρ):R一令R and positive constants αtラ6土>O such that,onひ{x{ξ({),o}whereσバs the丘nite number o£open coverings of X、。g ω(1)一α。帝/*ω・・十^∂∂・尤(ρ)b・1∈[T,・・),ρ一1・g((1+i・(を)i2)1ξ(4),。i2), ・・df・・…hl∈[T,・・),・1(ρ),0,・;戸(ρ)>0£…11ρ・∈(一・・,・・)・・dth・・…i・t・m・・th f㎜・ti・n・,f… ∈P,・・),σε,・(・):[0,・・)→R,σt,。。(・):10,・・)→R { 叫,・(θρ):・。(ρ),叫,。。(θ一ρ):〃f(ρ)一6。ρ, 叫,。(O)>0,ひ;,。。(0)>0・ S虹。e?4(ρ)is strict1y monotone increasing for each之∈[T,○c),we obtain as£o11ows: 0=1im刎二(ρ)<u二(ρ)≦1im伽二(ρ)=6t.、」 ρ→一〇〇 ρ→◎o We can compute for左∈『,oo) 戸∂∂叫(ρ)=仙1(ρ)月∂∂ρ仙1’(ρ)ρ∂ρ〈∂ρ =・1(ρ)月∂∂1・g(1+1・(乞)!2)刈(ρ)月∂ρ〈∂ρ =・1(ρ)市1*嚇十・1’(ρ)月∂ρ〈∂ρ. Weput∼)(z(を))…(1+lz(4)12)㎝eacha嗣ne opensetひ1・Aswe con丘medintheprevious sectionラwe h&veξ({),o≠0,oo.Therefore we may considerξ(壱),o is a point in A1\{O}.Now we de丘ne the basis in the fo11owing way: ▽ξ(1),・三dξ(1),・十ψん(1)ξ(1),・一んψ(1)ξ(1),・1 {外▽ξ(1),・}i・d・・1.t・th・b・・i・ ・岩乙)一、3一峰),/{ (乞) ({) 62 We can compute&s fo11ows: 1 ∂ρ二∂1・g(ん(旭)iξ(乞),。12)= ▽ξ(、),。 ξ(1),・ 5.2 Proofof lLemma1.1 PR00F・Note that onひ{×{ξ(4),o},we compute ω(τ)二(α圭十・1(ρ))帝1*ω。。十月・1’(ρ)∂ρ〈∂ρ 1 _ 二(α。十・1(ρ))帝/*咋・十^ 肌1’(ρ)▽ξ(旭),。〈▽ξ(旭),。 1ξ(1),・12 and 1 (1) ω(1)η十1一(α。十伽1(ρ))η 何1’(ρ)((/*ω珊)η〈ρ2dξ(旭),。〈2∂ξ(丑),。)=0, 1ξ(1),・12 (2) ω(乏)㌧(α土十且4(ρ))れ(帝/*ω用)へ As we know,we have (3) ω(左)→ωoγinOo。・nX、、。・・亡→・・. Therefore (4)肋(ω(1))=一ρ∂∂1・gω(1)τ1→肋(ω。γ)一0i・ぴ・・X,1。・・1→・・. 趾。m(2)a.nd(4),we must have (5) 月痂・g(αt川(ρ))→O・・X、、。・・亡→・・. This gives us (6)月∂糺(ρ)(∼・伽」(ρ))一月狐(ρ)糺(ρい…11ρ∈(一・・,・・) whereαoo≧0. We can ca1cu1ate as fo11ows: (7){(α。。十・」(ρ))軌ρ)一(伽二(ρ))2}ρ∂ρ〈∂ρ十(α。。刊」(ρ)以(ρ)1*嚇一0. (7)is equiva1ent to the fo11owing equations(8)a.nd(9). (8) (α。。十・」(ρ))心ρ)=(・二(ρ))亭, (9) (α。。刊」(ρ)以(ρ)=1O・ If uZ(ρ)=0,then u二(ρ)二〇can be obtained by(8)、This means we have two cases possib1y hapPen und−er these circumstances,which are伽よ(ρ)…0or u」(ρ);0for a11 ρ∈(一・・,・・). 63 First1y,we observe the ca.se u』(ρ)…0£or anρ∈(一〇〇,oo). Then we haveω(広)→αo。π紅乙*ω冊asτ→oo,Ifαoo:O,then it contradictsω(之う→ ωσγ>O on X、、g.Therefore we may conc1ude thatαoo>0and一 α。。帝ム*ω・ザα。。・*ω珊=ω・γ・nX、、。. We second1y consider the case4(ρ)三≡0£or a11ρ∈(_oc,oo).We use the£o11owing one of condi七ions which potentia1functions s就isfy: (10) ひ。,。。(ゼρ):秘。(ρ)一6元ρ、 Takingρ一derivative of(10),we get (11) イρ叫,。。(ゼρ)㍉1(ρ)一6・ a.nd d−i任erentia.te(11)one more time,we obta.in (12) ゼρ叫,。。(ゼρ)十七2ρひll。。(ゼρ)二・1!(ρ)・ By1etting左一→○c in(12),we have (13) ゼρ叱,。。(ゼρ)=ゼρ(1ユ」(ρ)一ろ。。)=0 since we assumedσ二,。o(ゼρ)=肌二(ρ)三0・This means we must have u」(ρ)≡6。。≧O f…11ρ∈(一・・,・・). If6。。=0,then it becomes tbe previous case.We consider the case6。。is positive.Then we have ω(t)=(α、十砒1(ρ))巾1*ω。。十^ψ(ρ)∂ρ〈∂ρ →(∼十,馬市1*ω用 a.sτ→○o for a11ρ∈(_○o,oo),whereαoo≧0.Hence we obtain (α。。十6。。)帝ム*ω珊=(α。。十6。。)1*ω・・=ω・γ・nX、、。、 As a resu1t,c。。≡α。。十6。。must be positive in eithe平。a.se.Then we五na1エy have 五七。(coo乙*ωF8)=1R4c(乙*ωF8)=0 on X、、g, For these−reasons,Lemma1.1ho1ds. ・ 口 5.3 Proof of Theorem1.1 PRO0F.Ghoose a semi−positive」c1osed一(1,1)initia1formωo虹the c1ass c1(乙*0ぴ(1)). As we see in the proof of Proposition4−1,the unique soIution of the wea・k K葛h1er−Ricci 且0wω(広)converges to the singu1ar Ga1&bi−Yau metricωσγin o◎。on X。。g asヵ→oo.Since the metricωσγis unique in c1(↓*0pN(!)), * ω0γ:乙ωF8 64 can be obtained−by consid−ering the resu1t of Lemma1.1,Tberefore we have ω(之)→!*ω冊i・0o。(X、、。). Mloreover,we h&ve the re1ation [秀*ω(t)1=[矛*ω。1=[テ㍉*ω用1, whereテ:X→X is a reso1ution of singu1arities.Therefore,in a simi1ar manner of sub−section3.2,we can conc1ude that there exists a rea1smooth functionψt∈σoc(X)灰 for each亡∈[O,co)such that 示*ω(之)=升*/*ω冊十ρ∂拓 &nd thesθfunctions must satisfy ψ士一合0 as亡一ト○o in Ooo(X)、 Since爺*ω(之)=O,弄*乙*ωF8=0on each connected−componeI1t in the五ber ofテ,which gi・・…戸∂∂ψFO・・…h・・mp㎝・・t剛th・・w・h…島三・…t・・ψ)f・・…h 之∈10,・・)・・…Hb…f肴.島n・t…11yd・…nd・七岬亡∈ぴ(X,e。)・・nX・u・いh・t 帖…constant(之)on X,i,g and仰。onverges to O inσoo−topo1ogy on X、、g.This gives us th・tω(左/ヨ*ω冊・nX,i、。f…11左∈[0,・・). Note thatもhe initia1formωo∈01(ム*0炉〃(1))is equiva1ent toム*ω舳We can prove the eSt:i1二nate 0’1ω。≦ω(之)≦0ω。 on[O,oo)×X.The upper bound−on X、、g can be obtaiムed−by appIying the maximum princip1e toψt≡1ogtrω。ω(左)一λ2帖for su舐。ient1y1argeλon X、、g with using the工。o− estimate for仰。n X。。g.The1ower bound on X。。g is obtained with using the estimates 0−1 〟?ヨ(t)η≦0Ω・・[0,・・)・X・・、(,whi・hi・・q・i・・1・・tt・th・κ・・tim・t・f・・細・・ X・・。)lt・ω(・)ω・≦(、ま、)1(t・ω。ω(1))η一1、赤1・・dd・tml・m・・w・h…ザ・…t・・t(1)・・ X,i,g,the estimate ho1ds on who1e X.The estimateω(乏)≦0ωo on一〔0,oo)×X gives us that the induced distance functions凶by the metricω(t)are equicontinuous with respect to the distance function ind−uced byωo on X。。g.As we see in Lemma3.8,thgre exists a sequence of times{t{}sucb−thatち→○c asゼ→oo and{凶、}converges to a continuous d−istance function doo…dム‡ωF,induced by乙*ωF80n X、、g(dt、≡d、↓岬、on X,i㎎)一Then we ca.n e&si1y co組r=m the chara.cterized−conditions of Gromov−Hausdor冊。onvergence appeared− in Section3for七he distance spaces(X,∂オ、),(X,d、申卯、)are a11satis丘ed as fo11ows:We ・h・…φ二ψ=ル・ndf・…y・。,・。∈X、、。,1み、(∬・,”・)一。。(・・,・・)!→O・・1→・・ ・nd凶、(”,”)=O,d。。(”,”)=0f…ny”∈X, Hence we concIud−e tha」tω(苫)converges to the unique singu1ar Ca1abi−Yau metric乙*ω冊 in c1(乙*0ぴ(1))in the Gromov−Ha.usdor任sense。 口 As a consequence,we cou1d conc旦ude that the conjecture w&s proven by starting the K枷er−Ricd且。wwith area1semi−positive c1osed(1,1)一formωo∈c1(ム*0ΨN(1))。We hope that this specia1assumption can be removed.We expect that the comection between a1gebraicgeo皿etry測dthe K捌eトRicci且。wwi11become much c1oser,We shou1d enrich ou−r view of two of them in order to so1ve this issue c1earIy. 65 6 Expanded resu1t ofthe estimateわr the sca1ar cur− vature with a crepant reso1ution Theorem1.2h&s been shown und−er the鍋sumption七hat曲e reso1utionπ:X’→X is crepant,which means we haveα壱二0for a11乞where Kx。竈7r*Kx+Σ二隻=1α乞凪,{凪}ξ=1 is the irreducib1e components of tbe exceptiona口。cus亙”c(π)ofπ,by J.Song and Y. Y…帥1∴W・wi11p・…tb・舳・p…ib1・f・…t…p・・舳・・…mpti・・αゼー0t・ α壱>山1in this section. 6.1 Estimateわr the sca1ar curvature ofthe so1ution ofthe per− turbed Monge−Ampさre且。w We use the sa皿e耳。tations as the previous sections−Un1ess a reso1ut1on of singu1ari七ies クr is crepant,π*Ωvanishes or blows up a。ユ。ng the exceptional d−ivisor五πc(7r)ofπon X’一This can be found−out by the expressionπ*Ω=(18週ほ風)(13F1貫ダ)一!θwith a positive a.nd smooth vo1ulm−e form一θon X’and sections a.nd me廿ics on ho1omorphic}ine bund1es ass㏄iated to the divisors亙&nd F.Wh1ch is why crepant has been assumed.But ifwe restricけhe argu−ment on a compact set K⊂X’\万”c(π),then we do not need to worry about whether the pu1Lbacked vo1ume form vanisb−es,b1ows up or n−ot..For any compact ・・tK⊂X’\砒・(π),w・h…Kx・lK=π*(Kxl、(K))・・dth・・Kx・lKi・・1・…m・・i・・11y trivia.1−LetΩbe a vo1um−e form such tha.t it is smooth,positive and−R乞。(Ω)=0on X、。g. we de丘ne叫…π*(Ω1π(K)).This is smooth,positive and肋(叫)。。0on K. Since we can identify an invertib1e sheaf on a smooth projective variety with a ho1o− morphic1ine bund1e on a projective manifo1d associated to the variety,we wiu make an argument on a projective manifo1d−X趾st工y.And after that,we appIy the resu1t obtained on X to a smooth birationa1mode1X!.Now1et X be a projective manifo1d−and一ムbe a big seI皿三一a皿}P1e ho1oInorphic1ine bund1e over X.Then there e丈ists an e畳ective divisor万such th−at c1(乙一6【.冴1)>0for su舐。ient1y sm−a.u6>0where回1is an associated−ho1omorphic 1ine bund1e.Since the divisor万wiu correspond to the excep七ionaユdivisor万”o(π),we mayassumesupP肌supPF⊂supP且WesupPosethat foranycompact setκ⊂X\亙, there exists a smooth positive voユume formΩk satisfying地。(Ωk)=0on K“n sec尤ion 4,we obtained the es尤imate畑。,。1,。、1,o。。(【δ,。。)×K)≦0δ,K for anyδ>O,any co皿pact set K⊂X\刀.Let M乞…[δ4,oo)×κ乞whereδ{→O,K乞→X\亙asφ→oo,Wさ。hoose the diagon&1sequende(r!)毛,{,(ブ2){,づa」s it converges on/V1,ノV2ゾ。.,ノVか Let ψ、三1im(Ii1msup¢、,、工,、、)*. r2一÷O r1一寺0 We notice th就the1iInit ofthe diagona1sequence coincides withψ、.Therefore we h&ve ψ、∈0oo(P,oo)×X\五),ψ、(乏,・)∈P8∬(X,ω、)∩ム。o(X)for a・11t∈[O,oo)satis丘es the fo11owing pertuエbed−lMoI1ge−Ampさre畳。w for e&ch compa.ct set K⊂X\亙: 細、一1・・(ω呂十保卿s)Lい・[・,・・)・K, { ¢、し一。二〇 66 From Lemma4.12,we have the estimate σ ∂ 一0一一≦一ψ、≦0 on X for some constant0>0. t ∂t Pro白。sition6.1.Let園、三ω、十〉⊂了∂∂ψ、.For anyδ>0,there exists0>0such that a1ong the且。w above,the sca1ar curvature satis丘es the fo11owing estimate for a11t〉δon 耳ny compact set K⊂X\亙: n σ 一≦8(σ、(τ))≦一 亡 之 PR00F.Let▽、,△、be the gradie批and−Lap1acian operators with respect to the metric働、.In the prdof,we use<・デ>、,ト1,to(ienote the inner prod−uct and−norm with respect to the metric0、.We丘x the colmpact set K. First1y,we show the1ower bound of the sca1ar curvature. 岳・(剛)一1味(1))ト・・一(・・知) こ△、巾、(乏))十1肋(お、(之))ほ where we used一 ∂ ^∂∂沖一一州働・(1))・肋(()1・)一一助(畳・(1)) a.nd一 品(品ψ・)一峰。・ We have 1 2 2 1 0≦肋(σ、(苫))一一昨、(玄))こ1地(①、(広))ほ一一中、(之))2ト3(①、(乏))2. η 8 η η Thi・gi…去3(お、(t))2≦岬・(ψ))ll・・dw・h… ∂ 1 −8(お、(t))≧△、8(働、(t))十一5(働、(t))21 ∂亡 几 Now we apP1y the皿aximum princip1e to (い・)(榊)))・・(σ・(1))÷(ψ))・・ Assume thatむ8(δ、(む))achieves its mini㎜um at(zo,左。),zo∈K,亡。>δ. We have at (・。,¢。) ・・榊・))(1+告榊・)))・ If3(園、(尤。))≧O at(zo,¢o),we do not I1eed−to a.rgue a.ny m−ore.If8(働、(苫。))<0at(宕。,ヵ。), we must have1+等8(の。(τo))≧0at(zo,之。).Combining these,we have之。8(働。(之。))≧一η. Therefore,we have η 8(働、(之))≧一・・(δ,・・)×K. τ Next,we sbow the existence of the upPer bound.For the proof,we need to prepare the fo1Iowing Lemma: 67 Lemma6.1.We have o川O,oo)x K (1)△凧)1紅一(▽。)1△・細十圭肋ヲた∂石紅, (2)岳1▽。細11;△凧知。ll−1▽凡細11■∀、∀、細、ほ, (千)品(瓦嘉ψ・)=△雰(瓦品ψ・)一1▽・▽・嘉剛葦・ PR00F.(1)We can compute as舳。ws: ∂ ∂ 一 ∂ (∀・)∼(▽・)1(▽・)ラ亙ψ・二融秀玩ψビF払∂砺¢・ _ _ _ ∂ =(▽・)ラ(▽・)∼(▽・)慨ψ・1 (▽。)凧)1(∀。)1知一鳩峠卜専蛎如一ar紐ト ∂ 一 ∂ =(∀・)ラ(▽・)τ(▽・)万ψ・十捌。ラ此∂新ψ・・ Tbere£ore we have _ _ ∂ 1 _ _ _ _ _ ∂ △・(▽・)ラ玩¢・ニラ((▽・)1(▽・)汁(▽・)万(▽・)1)(▽・)ラ所ψ・ ∂ 1 一 ∂ =(ウ・)ラ△・玩ψ・十プ峠∂慨¢・・ (2) 品卜岳イー品((軌)卯・)1知(∀・)1岳帆) 一仰((・・)知凧)知)…l/(私)峠夙凧)品帆/、 一・咋凧)知川)知/、 =、瓦ド・知1:一口・知に一可、品軌1: wb−ere we used1.at the third−equa1ity. (3) 品(∼知)一品((軌戸(▽・)凧)1知) 一一(軌)1τ(軌)弘(品(軌)庇)(▽・)凧)1知 十(叫戸(▽。)凧)1品(知) 一一(軌)1・(軌)弘(▽。)凧)1品式(▽・)爪)1知十△r(△・岳帆) 一一1耐。知に十年(△・知)・ 68 Let ρ≡1▽1知・I書, o一綱、 where O is a c㎝stant such that細。<0on X(see Lem皿a4.12).We ca1㎝1ate with using the resu1t of computations in Lemma6.1: (品一礼)ト(岳ナ慕苧I三・品(。.妄帆)1叫帆に 一2児θ<不評細㌧(。.㌔軋)中1 一■軌咋守椒・(。等)。斗1: 2地<▽、1ウ、細、ほ,▽、細、>、 (ト細、)2 一(。考)。斗1−2平僻瓦は Note that 卵j芦篶1ほ・、粁i三芳1書 Wehave ∂一 一1▽、▽、細11−1▽、▽。細、l12地<▽。細。,▽。P>、 (一一△、)P= 一 ∂之 一 〇一嘉ψ、 σ一品ψ、 Choose su紙一。iently sma1161,62,63>O such that ∂ 一 1∀、品ψ、1会 1▽、▽、品ψ、1姜十1▽、▽、品ψ、i… (ガ△・)P≦’6・(・一綱、)・^(1−6・) ト細、 2地<▽、細、,▽、ア>、 一(1一・。) σ一綱、 Next,for constant3〉1,Iet 9・戸篶:・〃 Wも。a1cu1ate with(3)in Lemma6.1 品(≠彰:)一一半㌢・1㌍第11義一¥劣芳コ 69 峠筆)一一事L2Re<㌣尊午㍉ 一吟((。峯)。・晩<を㌢払) Therefore we have (岳叫書:)・等1−2地<字1声)㍉ and (品)・一軌細1書÷1)I帆綱1書一2Rθ〈;等9>5 ≦ ξ(△。紐)2 2冊<▽。紅,▽。9>。 σ一紅 ト細 for some consもant B〉1. For anyτ≧δ, (品一)(ト/)戸)・十・・)2Re<“年号一δ)P)㍉ .(亡.δ)、、1{▽・紅は十ア ト細、(ト細、)2 2地<ウ、細、,▽、((トδ)戸)>、 ≦一(1一・3) o一綱、 一(之一δ)・。σP2+戸f・…m・・…t・・tσ. We may assume that(君_δ)?achieves its ma対mum at(to,zo),之。>δ,zo∈K.Then we have at(広。,zo) (亡rδ)ξ。σア2≦P. Hence there exists0!>O such that (t一δ)ア≦σ。b・・11之≧δl On the other hand,for any広≧δ (品一入)(ト1)・)・一2吋辛午δ)9)>5 8 ∂ (△、細)2 一一(左一δ)(0一一¢、) 十9 n ∂乏 (0一品ψ・)干 2地<ウ。知、,∀。((左一δ)9)>。 ≦一 〇一綱、 一0”(左一δ)92+9 for some constant0”. 70 We may assume that(左_δ)9achieves its maximum at(島,z6),垢>δ,zる∈K.Then we h・…t(之ら,・6) 0”(ザδ)92≦9. Therefore there existsσ2>0such that (トδ)9≦0。あ・a11む≧δ. In conc1usion,there exists03>0such that ・(叫)一一ヰ・之讐、(・÷) 02 0 ≦ (o+一) 広一δ 左 03 03 一 ≦丁・7・・K⊂X\亙・ Fina11y,we ha.ve 几 σ σ 一 丁≦巾・)≦7+ポ・・亡・δ,㎝・・m…t・・tK⊂X\刃・ 口 We丘xδ>0arbitrary and choose a sequence{δ山such thatδ{→δas4→○o. As in the previous section,we e油aust X\亙by co㎎pact setsκ乞with一κ6⊂K4+1and ∪乞K{=X\亙.Let0乞…一δ乞,oc)×凡.Since we have theσ◎c−estimate 同1州0毛)≦01, w・・…b・・…h・di・g…1・・b・・。・・…{ψ、、,、}壱…hlh・・i…{…g・…0!,0。ゾ..,0づ. Then we have. ψぺψin㍗n(4oo)×X\亙・ Therefore,we have 3(軌、,、(左))→8(ω(之))i・0o。・・(δ,・・)・X\亙・ Since Proposition6.1ho1ds for each K乞,we have n 0 0 一 一7≦8(ω(之))≦T・ポ・・之・δ・・X\皿 71 6.2 Proof of Theorem1.2 PR00F・Let X be a projective Ca1&bi−Yau variety withユ。g ter平三na1singu1arities−Let π:X’一÷X be a reso1ution of singu1arities、、Me qan apP1y the resu1t obtained above to the smooth projectiYe variety X’and rewrite it as fouows: There exists a semi−amp1e and−big Cartier d−ivisor D associated−toπ*乙*0洲(1)since we have the isomorphism Pic(X!)皇Gd−iv(X!)/∼、This divisor D corresponds to the semi− amp1e and−big ho呈。morphic玉ine bund1e工.There exists an e丘ective d−ivisor〃such that supp〃=砒。(π)and D_”is amp1e for su担。ient1y sma116>0.We may consider supp〃U supp亙U suppF⊂亙πc(π)。Therefore五”c(π)corresponds to the divisor亙.Let i1)二π*ω・十ρ卿∫.ψ’・…6・p・・d・t・th・1imi}・fth・di・g…1・・q・・…ψ、、,、・ ω∫ We use曲e vo工ume formΩレ…π*(Ω’、(κ)),which is smooth,positive and肋(叫)=0 on K,We consider the fo11owing perturbed Monge−Ampさre且。w for aI1y compact set K⊂x’\批・(π). { 凹 細1一・g(ω二十字∂¢二)L・、㎝[O,・・)・K, K 榊一。=O whereω二≡…π*ω、and夙∈0oo([0,○o)x X’\亙”c(π))for each8∈(O,11− We consider an exhaust sequence{K乞}産ユwith compact sets K{⊂X’\肋。(π)and choose a diagona1sequence{ψ二毛、}(8乞、{→O a.s乞→oo)which converges on compact sets K1,1..,K毒as we did−before.App1ying the argument in the previous sub−section,we have the same Tesu1t that for anyδ>O,there exists0>0such that 肌 o σ 1≦3(ω’(之))≦丁・ポ・・乏・δ・・X’\肋(π)・ Since〆(尤,・)≡…constant(之)on each connected component in the丘ber of7r,〆natura11y descends toψ,which is the unique so1ution of the1Mlonge−Ampさre且。w on[0,oo)x X、、g as we see in section4.Hence we have for anyδ>0,there ex三sts0>O such that η o o ; 一7≦3(ω(之))≦丁・ポ・・τ・δ・むX・… Hencethesca.Iarcurvatureuniform1yconvergestoOasτ→ooinOoc−topoエ。gyonX、、g口 In this section,X was&ssumed to be a projective Ga1ab三一Yau variety.Then more genera1ized−prgb1em comes out natura11y:How about a normaI Q−factoria1projective variety?Without the assumptionthat曲ecanonica1divisorisnumerica11ytrivia1,canwe get the same estimate for曲e sca1ar curvature?And一,what kind of resu1t can we get ifwe cou1d consider a1ong time so1ution?We win answer these ques七ions in the next section. 72 7 Estimate胎r the sca1ar curvature on norma1Q− factoria1projective varieties with1og termina1sin− gu1aritieS In the previous section,we showed七he estimate of the sca1ar curvature on projective Ca1abi−Yau varieties.In this section,we wi11stud−y o阜the behavior ofthe sca1ar curvature on a normaI Q−factoria1projective varie七es with1og termina1s三nguIarities and prove Theorem1−3,Coro11ary1.1and Theorem1.牛 The esti皿ate ofthe sca1ar curvature proven by G.Tian and J.Song in一[ST3]under the assump尤ion that X b−as crepa.nt singu1ari元ies三s simi1ar to ours.But they d−i(i not sta.te a speci丘。 upper bound−in their paper,a。早d.a.ddition to it,they didn,t give us the convergenceresu1t.Wewi11con量rm the ass㎜ユption canbe more genera1ized and wi11see more speci丘。 estimate and convergence. 7.1 Pre1i㎜inaries for Theorem1.3 De丘nitio皿7ユ.Let X be a norma.1Q−factoria1pmjective variety witb−1og termina1singu− 1arities.Let∬be an amp1e Q−d−ivisor on X.Letωo∈c1(0x(∬))be a c1osed一(1,1)一form on X.ωo is smooth&nd−positive on X、、g.LetΩbe a smooth positive vo1ume form on X、、g−We de丘ne一ぞ。rρ∈(0,○c1, 岬仙,Ω)一/!1・町一・)∩1・・(・)i(ω・十字晦㌧・(・)/, and一 κ見、(X)三{ω・十戸∂∂{∈P叫(X,ω・,Ω)}一 Where Ox(H)is an associated invertib1e shea£κH,ρ(X)does not depend onωo∈ 01(0x(∬))a・nd.Ω、 De五皿比io皿7.2.Let X be anormaユQ−factoriaエprojective varietywith工。g terminaユsingu− 1斗rities.Let∬be an amp1e Q−divisor on X.Letω6∈c1(0x(H))be a c1osed一(1,1)一form on X、ω6is smooth and positive on X、、g.Let T…・up{τ>olH+之Kxi・n・f}. A fami1y of c1osed(1,1)一fromω(之,.)on X for苫∈P,T)is ca11ed the so1ution of the weak K萬h1eトRicci且。w if two cond−itions be1ow are satis丘ed一: (1)ω∈0。。((0,T)×Xr,g).Letゐ毛∈c1(0x(H+τKx))be a fam三エy ofc1osed(1,1)一forms on X(smooth and positive on X、、g)for尤∈p,T).Thenω=島t+〉⊂了∂δρfor ・・m岬∈0o([0,T)・X、、。)∩σ◎。((0,T)・X。。。)・・∼(広,・)∈P冊(X,ゐ・)∩ぴ(X) for a11尤∈[O,T).We Putω〇三ωる十ρ∂卵1士=o、 (2) { 嵜=一枇(ω)・・(0,T)・X・・。, ω(0,・)=1ω… X、 73 Remark7.1.Since the Q−divisor H is assumed to be an&mp1e divisor」on X,T a1ways becomes positive, lLemma7・1・(Base−Point−free theorem[Ka11)Let X be a norma1Q−factoria1projective varietγLet D be a nef Q−d−ivisor on X such亡hatαノ)一κx becomes nef and big for some α>0.Then工)is se岬i_amp1e. Proposition7.1.Let X be a norma1Q−factoria1projective variety.Let H be an amp1e Q−divisor on X,Let T三sup{t>01H+士Kx is nef}.We assume that the canonica1 divisor Kx is not nef.Then∬十rKx is semi−ampユe. PR00F.From the de丘n批ion of T,T<oo an−d五十TKx is nef on−X und−er the assumption that Kx is not ne£And a1so,since∬is assumed to be a二mp1e,∬is nef and big.Therefore去(∬十TKx)_Kx二去H is nef and−big.By the b&se−point−free theorem, ∬十TKx is semi−amp1e. 口 “ゐnext introduce an ana1ogous Lemma of Lemma4,1. 正emma7.2.Let X be a norma1Q−factoria1projective variety.Let H be an amp1e Q_divisor on X andπ:X’_今X be a reso1ution of singu1arities. Tben there exists an e猛ective divisor耳。n X’such that supp万二五”c(π)andπ*∬_6刃becomes amp1e for su担。ient1y sma116>0. 7.2 Smoothi㎎pr6pertyofM㎝ge−A㎜pさreaowswiththeinitia1 data in P3巧。n c1osed K益h1er man地1ds We趾stly introduce aresu1t in[Koj21, remma7.3.([Koj21)Let X be an肌一dimensiona1compact K註hIer man逓。1d.Let五一be a semi−amp1e ho}omorph三。1ine bund1e over X andω∈c1(工)be a s1mooth sem三一Positive c1osed(1,1)一form一、LetΩbeasmoothvo1umeformonX.Foranynon−negativefunctions Φ1and⑮2∈〃(X,Ω)for someρ>1withム=⑩1Ω=ム⑮2Ω,there existψ1and ψ2∈P3∬(X,ω)∩工◎o(X)SO1Ving (ω十〉⊂了∂∂ψ1)η=Φ1Ω { (ω十〉⊂可∂∂ψ2)η=Φ2Ω with m・X(ψrψ。)=mX(物一ψ。)一 X X 士h・nf・…yξ>0,th・・…i・t・σ〉Od・p・・di・g・・ε・・dρ,l1則〃(x,・))(1二!,2)…h that 1 lψr物1i州・)≦0恒r蛮・㍑帆)・ 74 Let X be aI川一dimensiona1c1osed−K註h1er manifo1d andωo be a K註h1er form on X,Let ψ・∈P服、(X,ω・,Ω)f・…m・p・1・・dΦ三(ω・十与伽)帆∈ムρ(X)W・・・…w・t・⑫ as a.comp玉ex Monge−Ampさre equation (ω0+〉二子∂∂ψ0)nコ重Ω. Since⑮∈〃(X),.according to[Koj1],we have物∈00(X)(Actua11y,it is proven that 吻is H61d−er continuous in EKoj3]). In the next Lemma,we wi11see that物。an be approximated by the d−ensity ofOoo(X) in〃(X)for1≦p<Q0(c£〔GTミ). 工・mm・7.4.Th・・…i・t物,ゼ∈P8∬(太,ω。)∩州X)…hth・t 1im llψo,{一ψo11脾(x)=0。 乞→oo PR00F・ForΦ(≡〃(X),there exist到∈σ◎o(X)such that⑮{>0,.ルΦΩ=∫x壷壬Ω and1im{→oo lゆ三一到1〃(x)=0,Now we consider the so1utionsψo,{∈P3H(x,ωo)∩0oo(x) of the Monge−Ampさre equations be1ow: (ωO+へ/二子∂∂g0,{)η=Φ{Ω. If necessary,we consider物,1+const−Hence,we may assume m弧(ψ・一ψ。,乞)=m・X(物,ドψ。). x x App1ying Lemma7.3,わr any6>O,there e文ists0>0depend−ing on6andρ,llΦ一1L。(x) and−IIΦIl〃(x)suchthat ユ 1物,ド州州・)≦σ1ΦrΦ11箏1・ Therefore Ve,have for some constant.0 1 11舳一州州・)≦011Φr到帆・)→0・・H㌣ 口 L・・ω。,、三ω。十ρ∂伽。ノ,ドー∂∂1・gΩ∈・1(0。(κ。))・・dω、≡ω。十奴.W・ consider七he next M1onge−Ampさre且。w which is equiva1ent to the K蚤h1er−Ri㏄i且。w with th・initi・1m・t・i・ωolづ: 争一1・・(ω{十与∂∂ψ冊)帆, { ψ、(O,)=物,旭 Let T…・・p{1≧01ω・十1Xi・K註h1・・}. Sinceψo,ゼ∈σoo(X)andωオ>0for any左∈[O,T),we can conc1ude that ther弓exists a unique smooth soユution of the Monge−Ampさre iow above on〔0,T)by making the same argument as in sub_section3.2. 75 Lemma7.5.For any0<T!<T,there exists0>0such that for左∈[O,T’1, l1例11L。。(x)≦σ、 Mloreover we have ラ 1im llψドψゴ11炉(【o,Tつxx)=O。 {,ゴ→oo PROOF.Let(仰)m徹≡maxx物.Then we have . ∂ (ω老十ρ∂∂(ψ4)m、、)肌 ω7 一(ψ旭)m、。:1・g ≦1・g一 ∂之 一Ω Ω’ Therefore,we have for some0>0 工。附、1ψ11・・’等・1・・等1・妙・・1・・ Next,we prove that{物トis a Cauchy sequence・Let島,ゴ三帖一灼、And1et(ψ{、ゴ)m胤、≡1≡ maxxψ{ヨコ。Then we have ∂ (ωむ十戸∂∂灼十ρ∂∂(ψ{,ゴ)m、、)η 玩(沽・・=1o・ (、士。ρ卿、)一 (ωオ十月∂弘)η ≦1og 一 :O (ω。十ρ∂柵)η This gives us max1物一州≦max lψo,乞一物,ゴ1→0 as4,ゴ→oc. 工0,T’]xX X 口 remma7.6.For any0〈T’<T,there existsσ〉0such that forτ∈[0,τ’1, c肌(ω。十ρ∂抽)れ ・ 一< <eT 0一’ Ω 一 PR00F.Let△{be the Lapユacian operator associated to the K註h1er formω乞≡ω士十 ρ∂∂帖、W・・1・・1・t・ ∂∂物 ∂帖 一(一)=△乞(一)十t・ω、(x). ∂t ∂亡 ∂t L・tψ・三倍一町Wh・・広一0,ψ。i…if・・m1yb…d・df・・m・b….W・h… ∂ ∂帖 ∂ (バ△1)ψ・一万十t・ω1(之λ)一(r△1)帖 二上七・ω、(ωr之X)二上t・ω、ω0≦η By app1ying the maximum princip1e,we have for士∈10,Tっ ψ1一耐≦ψ11仁0≦σ、 76 Si…w・h・…h…if・・m・・…b・・pd・f州・[0,T’1f・・mL・mm・3・いh・・…i… 0!>0・u・hth・tf・・τ∈10,T1 担。01. ∂之’ L・tψ・…一者一ル十九1・gl,W…1・・1・t・f・・1>0 (岳一・1)ψ・一一t・一(・)一λ1・・筈・λ卜机。(ω・)・㌢ ω㌘ η Ω ≦山σt「一1ωrλ工0g万十7+AIO・百十ル れ ・λ1・・券一σ(券)去÷・ 皿 旭 ・亨一(豊)1 壬 At the丘rst inequa.hty,we usedλω乏十X≧σωo for su担。ient!y!a.rge A>O.At the second一, 打、士ω。≧σ(黒)去。A・d・tth・・hi・di・・q脇1ity,w・…舳・f・・tth・tf・・μ・0w・h… μ→λ1ogμ一0μ1ルis un逓。rm1y bounded from above forλsu筋。ie就ユy王arge. We may assume thatψ2&chieves its maximum aい。〉O sinceψ2tends to−oc uniformIy&s之→0+一A七the point(尤。,zo)whereψ2achieves its maximum,we have (芳)1・・ Therefoたe,we obtain at(む。,zo) ωn<0ボΩ. 乞 _ This gives us for sonユe constantσ>0 ψ2≦ψ2(左0,ZO)≦一0109堵一 As a resu1七,we丘na.11y have for乏∈[0,ア] 1。。、一・が1≦生一1。。坐コ ∂之 Ω since g{is u出form1y bounded for之∈こ0,7■’]. 乃emma7.7.For any O<T’<T,there exists0>0such that for亡∈(0,T’], σ trω。ω1≦ε了・ PR00F.As we ca}cu}ated in the proof of Lemm−a3.5,we have (岳一・)1・・t・一物・一、、土叫(叫戸・(一・)llδ(叫)l1 77 We take norm1coordinates forωo for whichω乞becomes diagonaL(This is possib1e after some1inear尤ransformations.)Since X is assumed to be cエ。sed,the bisectionaエ。urvature ofωo is uniform1y bound−ed from be1ow,we h&ve£or someσω。>0 Σ(ω1榊(ω・)、∼ゴ(ω1)万 (ω1榊(ω・)為!δ(ω乞)δラー た,ゴ ぺ。Σ(ω1)舳Σ(ω1)コラ > た コ イω。(t・ω。ω乞)(t・ω壬ω。) Therefore,there exists&constantσωo>0such that (品一・)・・}・}吻・ Letψ…τ1ogtrω。ωゼ_λ2即毛,whereλis a constant which wi11be taken su舐。ientIy 1arge1ater.S三nceψ!t=o二・O,we compute on(0,T’] (品一へ)ψ…}一㌦(札一∼) η η 一^寺^牛如・^ η ・一札ω・・∼ω1・・(券)去・・ 旭 η ・一0(等)÷(t・ψ乞)÷・q ω 乞 where we tookλsu舐。ient1y1a.rge such thatλ2ωt_左0ω。ωo≧λωo, n η λ21・。等一σ(等)去≦0 ω ω 4 乞 and η れ η λ((上1)!)÷(等)÷(・・吻ω壱){一α・的ωr0(等)去≧0(等)÷(・・ψ、ト ω{ ωゼ ω4 forτ∈(O,τっ.We may assumeψachieves its maximum forτo>0anれ。∈X。 Then at (亡。,・。),WehaVe ωη t・、。ω1≦0÷≦σ・ ωO Therefore,we obtainψ(之,z)≦ψ(玄。,zo)≦0”for some0”>0・ This gives us 左1・gt・ω。ω乞≦0”f・・¢∈(0,Tつ. We can pmvethe fo11owing1emmabythe sameway in Lemma4,8。 78 Lemma7・8・For any0<ア<T,there exisい>0,0>0such that forむ∈[O,Tつ, λ 1!〃,・)ll・・(X)≦0・・、 This1emma te11s us tha七the metric(ω乞)仰has a0α一bomd on X forα∈(0,1).We app1y the parabo1ic−Schauder estimate to品ψ{: 小1)・(ω1)・11ヰr品(品ψト・・一。・・ Sinceω4肌d X are smooth on X,trω、X is a1自。 smooth on X.Then we have 11品川。…(、)・・1 f・・之∈[0,T’1. Iterating the Schauder estimate,we have /岳刈。、、、(、)・・1 f・川∈N,f・・乏∈/O,T’1. This means that we have for anyε〉0 畑一1仰(互、,Tつxx)≦σ、£or some constant0ε〉0・ In Lemma7.5,we showed一物is a Cauchy sequence in刀。o([0,T)×X).This indi− cates that we have帖→ρuni£orm1y in工。。([0,T)×X)一Since we have the estimate lI伸一I0。。([、,T’1×x)≦0ε,帖。onve「9es to炉in0◎o([ε,T)×X)わr anyε>0.Therebre,we obtainψ∈0.o((0,r)×X)∩ム。o([0,T)×X).The fo1Iowing Iemma teus us that物is a1so continuous atて二0,i.e.,we haveψ∈00([O,τ)x X),sinceψo∈00(X)can be obtained by Ko1odziej’s argumen七[Koj到. rem㎞a7.9.We have 、{器1Wデ)一ψ・(・)l1炉(・)一〇・ PR00F.As we see in Lemma7.4,Lemma7.5ラwe have− 1im11物,r州州x)=0 {→db 弧d 紅11ψr小岬11・)一・・ Wecムdosとど〉O arbitr邸拙hxit.Fortheε,thereexists asu距。ient1y1a士ge㎜mber 4…hth法七fd…yl≧∫、柚h… ε f。脚㌫Iψ1(ち・)一ψ(ちz)1<喜1 ε m・Xlρ。コセ(・)1・(・)1<一 x 3’ 79 For theεwe丘xed,there exists a su舐。ient1y sma11δ、>O such that ε maX1物,{(・)一ψ乞(τ,・)1<一. 正。,δ、]xx3 Therefore,for乞≧∫、,尤∈≡O,δ、]and−an−y z∈X,we have Wコ・)1・(・)1≦1〃,・)1(1,・)1+1物,1(・)1。(・)1+1物、{(・)1{(t,・)1 ε ε ε < 一一トー一一一=ε. 一 3 3 3 口 Therefore,we can conc1ud−e曲atψsatis丘es the fo11owing Monge−Ampさre丘。w: ■ 知一1・・(ω1+与榊, { ψ(O,・)=ψ。。 an∼∈(ブ。([0,T)×X)∩σo。((O,T)×X)since’アwas arbitraryもaken.We additiona11y show the uniqueness of the so1ution.Here,we assume there exists another so1utionψ. Letφ三ψ一ψ一And−1etφm狐三maxxφ,φmi。三minxφ.Then we have ∂ (ωt+〉二子∂∂ψ十〉二子∂∂φm徹)n 一φmax:1og _ ≦O, ∂左 (ωむ十ρ∂∂ψ)η ∂ (ωt+戸∂弗十ρ∂∂φmi、)n 一φ㎜n=1og _ ≧O ∂1 (ω。十ρ∂∂ψ)η This gives us0二φ血inlt=o≦φ皿in≦ψ㎜狐≦φmaxし・・o二・0・Hence we阜或veψ(τプ)二〇 for老F[O,T),which ind−icates tha・t we have the unique so1ution of the Monge−A血pさre equation,As we know,the K包hユeエーRi㏄i畳。w is equiva1ent to the equa.tion: ρ1吟一1・・(ωま十字∂ψ)一・ F・・mth…g・m・…b…,w・h・・岬wh1・h…1・丘・・知一1・g(ω毛十与卿)几・・d1m士。。・ド 物.If there exists another so1utionψof the equa.tion equiva1ent to the K倉h1eトRicci且。w such that 品ψ一1・g(ω士十字∂ψ)n+ψ), { ψ1竜一。=ψO, ψ∈00(〔0,T)×X)∩0o。((0,r)x X),where批(之)is a smooth function on(0,T).Since ψ(C,・)converges to a continuousψo(・)in Oo(X)as士→0andψo d舐ers fromψo by constant,we may assume thatψi。コ。=ρo.LetΨ三ψ一ψ・Then we have ∂ (ω士十ρ∂和十月∂∂Ψ)れ 一Ψ裏1・g 一 十ψ) ∂乏 (ω亡十∫て∂∂ψ)η 80 ・・dΨll一・一0・L・tΨ。狐…m…Ψ,Ψ。i、…mi・・Ψ.Th・・w・h…岳Ψ。狐≦・(1), 品Ψ皿i、≧州.F・…bit…ygi・㎝O<宕。<ちくτ,byi・t・g・・ti㎎f・・mい・1。,w・ obtain ・㌢1(1・ジ)・・㌢1(1・デ)・∫2ψ and 叫・Ψ(1・十I ゥ・Ψ(l1,・)・∫2ψ・ Combining th−ese,we have minΨ(ち,・)≧maXΨ(t2,・)一(maXΨ(τ1,・)一minΨ(乏1,・)). X X X −X By1ettingカ1→0+,we have,for an−y0<之<T minΨ(τ,・)≧maXΨ(τ,・). X X Thi・gi・・…Ψ(・,・)一Ψ(1)一ル(・)d・f…111∈(0,T).Thi・m・…th・tw・h… ψ一針ル(・)d…dth…1・ti…舳・・q・・ti・・i…1W.1…mm・・y,w・・・…tit1・d to say that we proved−the fonowing proposition: Proposition7.2.Let X be anη一dimensiona1c1osed−K註h1er manifoId.Letωo be a c工。sed positive(1,1)一form andΩbe a smooth vo1ume form on X.Assume thatωo≡ ωo+ρ∂∂物for someψo∈P8∬ρ(ωo,Ω)for some p>1.Then there exists the unique s血。oth k註h1er metricsω(t,・)∈0o。((0,τ)×X)which satis丘es the fo11owing conditio皿s: (1)品ω:一助(ω),・・(0,T)・X. (2)The亡e existsψ∈0o([0,T)×X)∩0oo((0,T)×X)such thatω=ωo+〉一=了∂∂ψand− 1imt→o+1}(τ,・)一ψ(・)1i脾(x)=o,Moreover,ω(tデ)converges toωo as a curたent as 之→0+,which means for any smooth(η一1,η一1)一d一組erentia1for血with co血加。t ・・pP・・tα∈外1,卜1(X),w・h…[ω(1)1(α);ムω(広)〈α→い。〈α・・H0+、 7.3 Ana1ogous arguments of Proposition4.1with the initia1 n1etric1ies in P8H∩0Q0 As we did before,we wi11consider a reso1ution of singu1aritiesπ:Xグ→X,and we may id−entify a smooth projective variety X’with&n associated.projective manifo1d(X’)んin our1imited framework.Therefore,in our next genera1ized argument,it is su伍dent for us to assume our new X is an、ん一dimensiona1projective manifo1d・ Weshou1d趾st1y set up a condition which is very simi1ar to condition1.O. Condition1.1:Let X be anη一dimensiona1projective manifo1d.Let工be a big,semi− amp1e ho1omorphic Iine bundIe over X and工’be a1ine bundIe such that c1(Z+ε工’)≧0 for su伍。ient1y sma11ε>0.Letωo∈c1(刀)andλ∈c1(∬).Letωt≡ωo+奴.As we did−in Gondition1,we assume tha乍ωo at worst vanishes a1ong a projective sub−variety of 81 X to a。丘nite oder,that is,there exists a.n e丘ective Cartier divisor亙。 on X such that for any丘xed K或hler metric汐, η≧叩亙。ほ協。ハ・…皿・…i・i・・・・・・・…0根 where帖。is a smooth hgmitian metric on the associated hoIomorphic1ine bund1e[五〇1. In addition to this we wiu consider Condition2.0as it is. , Since we assumed工is big,semi−amp1e ho1omorphic1ine bund1e over X,there exists an e笠ective Cartier divisor亙。n X such that Z一ε四is amp1e for any su伍。ient1y sma1王 ε>0ラwhere四]is a ho1olmorphic1ine bund1e associate早to the divisor・Therefore we ca・n ch00se3重andん角such that ω・十ε月∂∂1・g1献五一ωrε肋(帖)・0・・X\亙f・…冊・i…1y・m・11ε・0, where3角is a de且ning section of the divisor亙and帖is a smooth Hermitian metric on the1ine bund1e[亙]、with sca1ing帖we may assume13重1貫.≦1.And a1so,we may E aSSurne supP五UsupPFUsupP亙。⊂supP−E, where五,F a.re e丘ective divisors in Cond−ition2.O. Let T三・・p{之≧01・・(五十〃)≧0}、 In this sub−section,we wouId1ike to show the fo11owing ana1ogous proposition of Proposition4.1with the init三a}data in P8∬(X,ωo)∩0∞(X).And−we wi11combine this resu1t and the smoothing property in the next sub−section: Proposition7.3.Let X be anη一d−imensiona1project命e manifo1d.Assume that Condi− tion1.1and Condition2−0a.re sa.tis丘ed.、Then for anyρo∈P3∬(X,ωo)∩0∞(X),there exists the unique g∈0oo([0,T)x(X\E))with g(t,.)∈P8H(X,ωt)∩刀。o(X)for each τ∈」 m0,T)which satis丘es the fo11owing Mlonge−Ampさre且。w: 知一1・g(ω1+早∂ψ)冊・・[0,T)・(X\亙), { ψ(0,)=ψ・・nX lLemma−7.10.For any0<T’<T,there exists a su舐。ient1y sm11ε=ε(T’)>0such thatω之≧εωo for a11尤∈[O,T’]. PRd0F.Fix T’<T”<T.Since c1(ム十丁∬)=[ωo+TX1≧0,there existsψ∈ P8∬(X,ω〇十TX)∩0oo(X)suchthatωo+TX+〉二子∂∂ψ≧0. Letω6…ωo,ω二…ωる十TX+手〉二丁∂δψandΩ’…e去ψΩ Obvious1y,ω6,Ω’satisfy Cond−ition1,Cond−ition2respective1y.For any尤∈[0,T”1,we have 之 ’一 下一㌧ T一㌧ ωニニー{(ωε十TX)十〉⊂了∂∂ψ}十 ω0≧ ω0 T T T Then we obtain ∂ ∂ 1 (ω1+戸∂∂ψ’)几 一一≡一(ダーψ)・=1・g ∂τ ∂τ r 、 Ω’ This indicates that we can a1ways㌃ewrite the iow in ord.er tq make the so1ution sa・tisfy the inequa1itγTherefore we may assume that we haveωt≧εωo for a11亡∈[0,T’1。 □ 82 、We use the same notations a.s in the proof of Proposition4.1such a.sΩ、ユ,、、,ψ、,、ユ,、、a.nd so on・In ad・d批ion to them,we newly de五neωt,、…≡ωo+収十3汐,which becomes K註h1er for 8∈(O,11since汐is a丘xed K託hermetricon X.We considerthe fami1y ofMo㎎e−Ampさre 量OWS鵬fOuOWS: { 細則,・。一1・・(ωf,s+平1目・T・「・)肌 ψ、、、1,、、1尤一。=物 Sinceψ,、>0for any8∈(0ラ11and一ψo∈0oo(X),we obt虹n the fouowing Le皿ma in the same way as in sub−section−3.2: Lemma7.11.For any8,γ1,r2∈(0,11,there exist a mique smooth so1utionψ、,ツユ,、、of the Monge−Ampさre且。w above on[q,T)x X. We consider the fo11owing noma11zed1Mlonge−Ampさre且。w wbich is equiva1ent to the or三gina.1畳。w: { 紅,・。,・。一1・・(ωf・冨十守1色・Tユ「・L・。、τ、,・、 ψ、,、1,、、lt一。二物 The fo11owing esもima.tes can be obtained by the same method as we used−in sub−section 4.2.The d−i丘erence is on1y the estimate proved−in Lemma7.10. Lem^a7.12.There e尤st p>1andσ〉O such that for a11r1,r2∈(O,11 人(Ω着「2)ρθ・・ lLemma7.13.For any O<T’<T,there existsσ>O such that for ai18,γ1,r2∈(0.11 11ψ。,。、,。、l1州・,Tつ。x)≦0 1Lemma7.14−For any O<ア<T,there existsλ,0>0such that£orむ∈10,T∫1and ・,・・,グ。∈(0,11 ∂ 玩¢舳≦σ一1・・13重11重・ Lemma7・15.For any O<r<T,there exist0,’α>0such that£orτ∈10,T’1and ・,・・,ザ・∈(0,11 c _迦 t・^,・王,・。≦・Ti3水舌・ re皿ユma7.16.For any0<7■’<T,comPact set K⊂X\E there exist OK>0such th・tf・・乏∈[O,T’1・nd・,ヅ。,・。∈(0.11 11ψ、,、、,、、1ト(K)≦oK Therefore,weobta.intheuniformconvergenceofψ、,、、,、、inOoo([0,7「)xK)foreach compact se七K⊂X\亙,Letthe1imitedso1utionbewritteW・Weconc1udethefo11owing resu1t,which states the existence of the soIution in Proposition7.4: 83 remma7−17.卵atis丘es巾eぞ。11owing Monge−Ampさre且。w 知一1・g(ω1+与卿・・[0,τ)・(X\君) { {一〇=物・nX ,which1ieξinσ00([O,T)×(X\亙))and−P8H(X,ω古)∩工00(X)for之∈[0,T)、 The uniqueness ofthe so1ution is proven by the same way in sub−sect三〇n4.2with using Lem皿a・4.10and−4.11. 7.4 Generahzed resu此。f Proposition7.4wit1h此e ini批a1data inP8へ ・ “佑use the same notation we d−e量ned in the previous sub−sections. Let.X be anη一 dimensiona1projective manifo工d as before.Letθbe a smooth positive vo1ume form on X,For any物∈P8∬p(X,ωo,Ω)for someρ>ユ,we d−e丘ne the non−nega.tive function 璽≡、一ψ。(ω・・ρ枇・)η θ 几emma7.18.Tbere exis七sρ>〆>1such that ’ 蛮∈〃(x,θ). PRO0F.Sinceψo∈P8∬p(X,ωo,Ω)for someρ>1,we have 五((ωo+苧。)n)ρ1一八1波ゾ((ω0+{∂砂)ρ1… ’ ’ Wi七h・・i・g平1d・・i・・q・・1ityf・・守十百一11w・h… 人((ω0+早耐)〆θ 一μ殺)キ(朕)牛((ω・十字・)η)〆1 ・(八款ジ((ω・十字・戸){μ1論)㍉号 W。。h。。。。ρ・〆・1。。掻。i。並1y.m.11。。。h・hよt (μ猪)㌔)㌦ which三s possib1e s草nce we&ssumed0<うゴ<1in Condition2.O. 84 Therefore,⑮can be approximated by the density of Oo。(一X)inび(X,θ)for〆>1, th・ti・,th・…xi・t・p・・iti・・f㎜・ti・n・{Φ。}、∈(・,・]⊂0∞(X)・u・hth・t 蜘1Φ・一Φ11市,⑤)一〇・ LetΦo:Φ.We considerthefo11owingMonge−Ampさre equations: (ω。十・四十ρ∂∂刎(。,、))肌 10g =u(0,。)十10gΦ。, θ and (ω。十・θ十月痂/(、,、))η 1Og =ω(。,7)斗10gΦ。十7 θ Since logΦ、,1ogΦ、斗7∈000(X),for each8∈(0,1]and7>0,there exist the unique so1utions u(o,、),り(、,7)∈0oo(X).Accord−ing to[Au],we can va1id−ate the existence,the uniqueness and the smoothness of the so1utions u(o,。),ω(。,7)in the fo11owing way: Let M be a compact K註h1er manifo1d andωo be a K註h1er form on M■.Let F:R×M「∋ (τ,z)←》F(之,z)beaOoo−functiononR×M.Thena02−so1utionψof(ω〇十〉二子∂∂ψ)性= ・・p(∼,・))ωい…七・・11y砕・・1・ti・・一I・・dditi・・,if岳F(カ,・)≧0f…n(1,・)∈ R・M,th・・th・・q・・ti・・(ω。十ρ∂∂ψ)㌧・・p(F(ψ,・))ω8h…tm一・・t㎝・02− so1ution,Possib1γ早ptoaconstant・Inourcases,F(ちz)=君十1og亜・∈0oo(R×M’)or F(1,・)=1+1・g蛋、杓∈0o。(R・M一)・・dw・h…岳F(1,・)=1〉0f…11(1,・)∈R・M’ in either case.Therefore we may app1y them to our cases and then we have the two 香E・th・・1・ti㎝・刎(・,、)・・d・(、,。)f・・…h・q・・ti・・…p・・ti・・1γ ・. Particu1ar1y,weh勃veu(o,、),〃(、,7)∈工。。(X)fora阜y8∈(0,1],7>O.When8=0,wi七h the same argument in Lemma4.4,we can show tムat there exists a unique weak soIutio血 u(・,・)∈P服(X,ωo)∩ム◎。(X)・fth・・qu・ti・n (∵・・月11榊))㌧・…(・刷Φ・(景)一1 where Oo is a positive constant satisfyingムσoe伽(0,o)Φoθ=∫えω8.Simi1ar1y,there exists …iq・・w・・k・・1・ti・H(。,、)∈P冊(X,ω。)h引入)・fth・・q・・ti・・ (一・・月11ω(・・))㌧・(・,・)州Φ・(景)一1 where0(o,。)is a positive constant satisfyingム0(o,、)eω(0,・)Φ。θ=∫てω8for each5∈(0,1]. Therefore we conc1ud二e th躰Ilu(o,。)HL。。(x)and liω(。,7)iIエ。。(x)are uniform1y bg岬d−ed for a11 ・∈[0,11一 “・・滅愉th・舳・w虹g竜榊equ・もi・雌 (ω。十月∂書炉。)㌧σ。εψ・壷θ, 仏・月拓わ(。,、))㌧σ、州φ、㊥; wh…0。,0、・・・・・・・…t…ti・fyi・g“。θ耐㊥一〃、・ω(…)Φ、θ・・d0き→0。・・ 8→0for銚h8∈(0,11.We may assume that maxx(ψrω(o,。))=maxx(η(o,。)一ψd)・ Therefore we can apP1y Lemma7.3,and−then we have ⊥ l//(・,。r州州・)≦010・〆。Φイ・θω(o・5)Φ・1狐)・ 85 Sinceψo∈・P8∬(X,ωo)∩ムqo(X)is七he unique so1ution of the equation(ωo+〉⊂丁∂∂ψo)η: σoeψo璽θ,ω(o,。)converges toψo in工◎o(X)・Since X is c1osed,の(o,、)a・1so converges toψo i〃(X)・M・・・・…ラw・h…1Φ・一Φ1ρ・(・)≦01Φ。一到レ(。)→O…→O・Th…f… we have 1i甥1り(・,・にψ・1卵)一0・ Lemma7.19.There exists0>0such that for any su箇。ientIy sma110<8《1 り(・,・)≦・(・,・)≦ω(㌣・)・0・(1−1・・18重11局)・ PR00F・Letψ…u(o,・)一り(o,・)一5m1og18亘1荒垣where m>0wi11be chosen su舐。ient1y 1arge1ate平.Wemayassumeψachievesitsminimmat zo∈X\刀.Notethatthereexists a su拓。ientユy smauε>0such thatθ≧εωo.Since we assumed’8庄ほ.≦ユ,at the point 五 zo we have 。ψ>。ψ十・m工・・峨局 二e刎(O・与r”(…) (ω。十ρ∂∂・(。,、)十(・ザ・m伽(ん酋))十ρ∂∂ψ)肌 = _ >1 (ω。十ρ∂伽(。,、))肌 伽一1 where m is chosen1arge enough to satis蚊ωo一至≒二獅。(ん亘)〉O・This gives usψ≧ ψ(zo)≧0.By1etting m→oo,we haveω(o,8)≦u(o,8). L・・ψ’…、。去・、・(・,・)一・(・,・)十λ・1・g13重1三カW・m・y・…m・ψ’・・h・・…it・m・・㎜・m ・t・。∈X\后.Atth・p・i・t,w・k… 、ψ’十森刎(・,・) 。、ψ’・i知(・,・)一λ・1・・1・屈11重 =ε肌(0・・)一”(O・苫) (1+λ2・)(。。云。、ω・十。。貴。、四十中ρ∂∂・(・,。))η (ω。十ρ榊(。,、))π (1+^)η(ω・十〉⊂了痂(・,。r(、豊、ω・一λ・肋(ん看)一1+貴。、汐)十戸卿)η (ω・十ρ痂(。,、))れ ≦(1+^)肌 λ>0and−1>8>0are chosen su舐。ient1y1arge a五d sma11respective1y satis敢ing 1+λ28. 1 1 ω・一λ肋(ん盾)フ仁ω盾,・・会・ドが>0 This gives us that λ28 ψ’・ψ’(・・)・1。λ・、・(・,・)(・・)・1・・(1・λ2・)≦o・ for8=8(λ)>0毛aken su舐。ient1y slma1ユ・Therefore for such0<8《1,we have ・(・、・)≦η(・,・)十σ・(1−1・g1蛸唐)f・…m・・…t・・t0・O・」 口 86 For any compact set K⊂X\亙,we obta中 ・(・,。)≦刎(・,。)≦・(・,。)十0・ for so叩e constant0>O and su伍。ient1y sma.118>O.This te11s us that we have 1imllu(・,。)一ψ・l1川K)=0・ 3→0 With the same way in the proof ofLemma7,19,for arbitrary丘xed3>0and su紙一 。ient1y smau1》7>0,we can obtain l・(・,出rω(・,。)1≦07(1−1・g18重1貴店) for some constant0>0、 (ω。十・糾^∂∂刎(。,、))γ工=0、θ伽(…)Φ、θ and一 (ω。十・tヲ十^∂∂・/(、,勺))η=0(、,。){)⑫、。。θ. where0。,0(、,7)are constants satisfying∫疋0二εu(G,・)Φ。θ;∫x0(。,7)εη(・,7)軋十7θfor ea」ch 8∈p,1〕and7〉0.We may assume tbat maxx(u(o,、)一ω(o,、))二m弧x(ω(o,、)一刎(o,、)). Therefore we ca.n app1y Lemma7.3,and then we have ⊥ llω(・,。r伽(・,・加(・)≦σ1o・θω(o・8)Φド。(・,。)・”(o・邊)Φ的1狐) 1 ≦σ11壷ドΦ・・。1風) … σ’μ(7)一合0 as7一→0fbr丘xed8. Combining these resu1ts above,we obtain the fo11owing Lemma: Lemma7.2d.There exists0>0such that for su茄。ie且七1y s血a111》7>0, 1・(・,・十、)一刎(・,・)1≦07(1−1・g13重1三倉)十ω(7)・ We consider the fami1y of Mlonge−Ampさre equations be1ow鵬we did in sub−section 4.2: 紙ユ,。、一1・・(ω壬竿竿・・)帆一・。グ、,。、, { ψ!ツ、,、、1、一。一(1一δ)・(。,、), ・・…ωト(1一δ)ω・・1…θ・・…,・。,・。≡1・・考、、・・…if・m1・・・・・…f・・ 8,r1,r2∈(0,1]and−they approach O as8,r1,r2→0.趾。m Lemma7.10,for any虹ed T’∈[0,T),there existsδo二δo(T’)>O such thatωt:ωo+¢X≧δωo for anyδ∈[_δo,δo], 1∈[O,T11.W…wi・…hTl・・dδ。.Si…ω!2・O1・…。δ∈卜δ。,δ。1,1∈[0,T・1 and u(o,、)∈σoo(X),for each8,ヅ1,γ2∈(O,11,there exists a smooth so1ution of each equation on[0,T1×X,which is conc1uded by the reason wri枇en before Lemma4・2・Let ψ1,、、≡ω!?十〉⊂了∂減1,、、. We can prove the fo11owing estimates in simi1ar mamers that we used in previous SeCtiOnS. 87 I−emm車7.21.For any0<T’<T,there exists0>0such that for a118,ヅ1,グ2∈(0,11 1幟1,、、i1州。,。・]X。)≦0 ’Lemma7.22.For any0<T’<T,there existλ,0>0such that for左∈[0,Tっand ・,・。,・。∈(O,11 細、他・・一λ1・・1・l11重・ LeInn1a7.23.For any O<T’<τ,there exist0,α>O such thalt forむ∈ [O,T’]and ・コ・。,・。∈(0,11 0 _迦 ・・列1,。、・≦θ丁胤届㌧ remma7.24.For any0<T’<T,compact set K⊂X\亙there exists OK>0such thatfo・尤∈[0,T’1・nd・,γ。,ザ。∈(O,11 1脚、,、、li州κ)≦0κ F・・…h・∈(O,11・ndδ∈卜δ。,δo1,1・t ¢!δ)一拙。(拙。…砥,・。)*, ψ・一、1胆。ψW・一、11胆。砥,… These convergences are ih Ooo([0,T)×X\亙)since u(o,。)∈0oo(X)and T’was given arbitrary.On the other h触d,sihce the initia1dataψo does mt have su駈。ient smoothness, ψ、converges toψin Ooo((0,T)x X\広),which is a soiution of the Monge−Ampさre五〇w be1ow: { 如一1・g(ω・十与鮒・・(0,T)I・(X\酋) ψ1。一。=ψ・㎝X The uniqueness can be proven by the same method appeared in sub−section4.2. N・t・th・tf・・…h・,ヅ。,ヅ。∈(0,ll,弟1,炉、i…m・・thf・mi1yi・δ.W・・・…mp・t・ ・h・t知ジ、,。、1オー。一一側(。,、)・・d (い!!、,、、)(紬、,。、)一一・。三ジ、、(ω・)… By app1ying七he maximum princip1e,we obtain 抽、,、、・紬1他11一・1・)・ll・(・剣1il。。(・)・α W・・・・…丘㎜・h・・細?1,、、i・b…d・df・・mb・1・wwithth…m・w・・i・L・mm・4.1O. We obtain the fo11owing Lemma: 88 I.emma7.25.For any T’∈(0,T),there exists0>O,δo>0such that for5,rユ,r2∈ (0,11,τ∈[0,T’1・ndδ∈[一δ。,δ。1, ∂ 01・・舳月一・≦紬㍍≦σ Since the initia1data物is in P8∬(X,ωo)∩ム。o(X),we have to showψ、converges to the so1utionψin工。o([0,T’]×K)for each compact set K⊂X\且And then,we can gain the resu1t thatψis a1so continuous atカ:0.In order to prove it,we need to prepare the fouowing Lemma: Lemma7.26.There existδo>0and0>0such that for any8∈[0,1]and O<δ<1, (1)¢!δ)≦ψ、。δ・一δ21・g1城、十0(ひ(δ)十δ), 瓦 (・)¢!㍗、・≦ψrδ21・・峨角・0(ひ(δ)・δ) PR00F.(1)Letψ、三ψ、十δ・一ψ三δLδ210913店1貫、十λ(μ(δ)十δ).Wechoose1>δ>O E su舐。ient1ysma11such亡hatωo一冊。(ん君)〉O−Wemayassume thatψ1achieves its minimum at zo∈X\且At the point,we have ∂ (ω!2+ρ∂耐)十δ(ωr舳(ん危))十榊十ρ∂δψ。)几 一ψ1=1Og ∂1 . (ψ十月∂耐))れ ≧0 From Lemma7.20,we have ・(・,・斗1・r榊,・)斗0δ3(1−1・g13重1貧万)十ω(δ)≧0・ 士h…f・丁・w・h・…叩コT’1・X ψ・(1,・)≧ψ・(0,・・)一肌(・,・十1・)一(1一δ)・(・,・)一δ21・g18庄1三局十ψ(δ)十δ) 一肌(・,・・1・r・(・,・)十δ2(1−1・g13重ぼ白)十ル(δ) 1 1 ・λδ(1一フδ・ス・(…)) > 0 − for su:田。ient1y1a.rgeλ:λ(δ)〉0. (2)Letψ2…ψ三?、・一ψ。十δ210918角1三后一λ(ひ(δ)十δ)・We may assumeψ2achieves its maximum at zo∈X\亙.We choose1メδ>0su舐。ient1y sma11such that ωo_δ捌。(帖)_δ2汐>O.(It is possibIe becauseδ2汐becomes sma11much more f・・t・・th・・ω盾,δd・…Thi・i・tb・・・・…w・d・丘・・dψ・withδ3・)Atth・p・i・t・・, we obtain ∂ (ω。,、十ρ∂∂¢、一δ(ωrδ肋(ん看)一州)十ρ∂∂ψ。)肌 一ψ2:1Og 一 ∂左 (ω亡,、十・戸∂∂ψ、)肌 ≦0 89 From Lemma7.20,we obtain 砒(・,・・1・r・(・,・r0δ3(1−1・g18角i完亘)一0μ(δ)≦O・ Hence,on p,T’]×X,we have ψ・(ち・)≦ψ・(01・・)一(H)・(・,・・1・r・(・,・)十δ21・g18重1三角一ル(δ)十δ) 一砒(・,。・1・)一・(・,・)一δ2(1−1・g固蒐亘)一ル(δ) 1 1 一λδ(11δ十ス・(…十1・)) ≦O Ifor su{五。ient1y1argeλ=・λ(δ)>0、 口 1Lemma7.27.For any compact set K⊂X\亙,0<51≦82<!,we have ,11狙。1ψぺψ・ル(町1・・)一0・ PR00F.Letδ≡82−81≧0.From Lemma7.25,for any丘xed8,any compact set K⊂X\亙a.nd su舐。ient1y sma.11δ!,δ2〉0,there exists0二0(一に)>0such that lψ!δ1Lψ!δ・)1≦01δ。一δ。1. With using the estimat6above叩d estimates in Lemma7−26,we obtain 1 ¢、、≦¢!㌘)十〇δ去 ≦ψ。、。に/書1・・18豆11万十0(μ(δ)・δ芸), 1 ψ。、≧鵡・δ書1・・舳面一0(μ(δ)・δ去) ≧ψ。、一〇δ去・δ書1・・峨画一〇(μ(δ)・δ去)・ Therefore,on any compact set。κ,we have 2 1 1ψ、1一ψ、、1≦δ喜0K+σ(リ(δ)十δ葛)→0・…,・。→0. □ I−emma7.28.For any compact set K⊂X\五,we have 1im llψ(t,・)一ψo(・)llぴ(K)=o・ t→o+ FR00F.We丘x arbitrary chosenε>0. Since we have the estimate lゆ、l1炉([o,Tl]xx)≦0and the resu1t we showed in Lemma7.27, 90 ψ、converges toψin工。。([0,T’1×K)as8→0on any compact set K.For theε>0,we take su舐。ient1y sma118二8(ε)>0such that ε 1榊十ψ(ち・)iレ(岬・・)≦喜・ From Lemma7.19,we have Iim、→o伽(o,、)一物1し。。(K)=0.This means that for our 丘xedε,we can take8>0su固。ient1y sma11such that ε ll・(・バψ・1岬)≦喜・ Now we五x such3二3(ε)>O satisfying two estilmates above.In addition,there exists su田。ient1y sma11¢o=左。(ε)>0such that ε 1,ψ・(九十・(…)Iい(閉・・)㍉・ For su伍。ient1y smau5we丘xed and君∈(0,τo],we丘na1}y have ll¢。(リ寸・l1川K) ≦ll¢・(1デ)一ψ(1デ)1ト(K)十11伽(9,・)ツ・l1州・)十11・(・,・)一ψ・11川K) ε ε ε < 一一トー一トー=ε 一 3 3 3 口 Reca11that物。an be in00(X)by the Ko1od−ziej,s argument、士herefore we have ψ∈0o([O,T)×X\亙). As a summary,we note the fo11owihg resu1t: Proposition7.4.Le七X be an作dimensiona1projective manifo1d.Letムand一〃be two ho1omorphic1ine bund1es over X satisfying Condition1.1a1ong withωo∈cエ(工)ahd X∈c1(ム’)being smooth c1osed(1,1)一forms,LetΩbe a non−negative(肌,η’)一brm on X satisfying Condition2−0.Let T…{之〉01c1(Z+τ”)≧0}. Thenおr any go∈P8∬ρ(X,ωo,Ω)for someρ>1,there exists a unique so1ution ψ∈00(p,T)×X\五)∩0oo((0,T)×X\亙)withψ(尤,.)∈P8∬(X,ωt)∩Loo(X)for each 之∈[0,T)of the fo11owing Monge−Ampさre且。w 知一1・g(ω汁与∂∂ψ)π・・(0,T)・(X\盾), { {一。=ψ。onX 7・5 ApP1ication of Proposition7・5to projectiveIvarieties with 1Og termina1Singu1aritieS We begin with app1ying theエesu1t in Proposition7.5to our origina1setting. 91 Proposition7.5.Let X be a norma1Q−factoria1projective variety with1og temina1 singu1arities.Let H be an amp1e Q−divisor on X,ωo∈c1(0x(∬))be a c1osed(1,1)一form on X.ωo is smooth and positive on X。。g.LetΩbe a smooth vo1ume form on X、、g.We de丘ne X…〉⊂丁∂∂1ogΩ.Let T…・up{之>01H+泌xi・一n・f・・X}. Letπ:X’→X be a reso1ution ofsingu1arities−Let物∈P3巧(X,ωo,Ω)for some p>1. Then there exists a unique so1ution 〆∈0o([0,T)×Xへ亙”c(π))∩σoo((O,T)×Xへ亙”c(7r))withψ’(τ,・)∈P8∬(X’,7r*ωt)∩ ム◎o(Xノ)for each之∈[0,T)of the foI1owing Monge■Ampさre且。w { 紅一1・g(π申ωt+幕酬几・・(0,T)・(X’\批・(π)), {一。:π*物・nXノ. Moreover,〆is consta.nt a1ong each connected丘ber of7r.Therefore,〆descends to a unique so1utionψ∈00([0,T)×X、、g)∩0oo((0,T)×X、、g)withψ(君,.)∈P8∬(X,ω亡)∩ ム。。(X)for each之∈£0,T)of the fo11owing Monge−Ampさre且。w 知一1・。(ω・十与柳㎝(0,T)・X、、、, { 外一。=ψ。㎝X PR00F.FromProposition7.1,∬十TKx isasemi−amp1eQ−CartierdivisoronX.We may consider the pun−back of the d−ivisor since it is Q−Cartier,and which is a1so a semi− ampユe Cartier divisor on X’.In this situation,two ho1omorphic1iie bund1es工and∬are associa乍ed to[π*∬1,which is a se血i−amp1e and−big ho1omorphic1ine bund.1e associated−to the d−ivisorπ*∬,and[7r*Kx1resp㏄tive1y.Furthermore,from Lemma7.2,七here exists an e冊ective Ga.r吃ier d−ivisor亙。 o損X’such that suppEo=亙”c(π)andπ*∬_6亙。 beco血一es amp1e for su伍。ient工y sman6>0.Thereおre,we m&y cbnc士ude th就Conditionユ.1is satis丘ed und.er these circumstances.On the other haI1d,we have亡he for二mu1aκx。二 π*K・十Σ{α凪十Σゴらゴ㌃1wh…E1,巧・…i…d・・ib1…mp…れt・・f刃π・(π)with αづ≧0and1>6ゴ〉0.π*Ωva」nishes on each易to oderαづand which has po1es a.1ong those巧一with od−erら.This te11s us thajt Condition2.0is a.1so satis丘ed.Add−itiona11y,it is und−ers柘nd−ab1e that we may勧ssume supp亙。∪supp亙UsuppF⊂亙”c(7r).In this regard一, we may app1y Proposition7.5to our setting.Sinceπ*ωt=0a1ong eacb component of the exceptiona1divisors,we haveρ∂∂〆=0a1ong each component.This means〆 must be constant a1ong each component of亙”c(π).Therefore,〆descends to a unique so1utionψonX、,口 We can pエ。ve the fo11owingproposition,whose exis七ence is from the resu1t ofPropo− sition7−6and the uniqueness is shown by the same mamer in the proof of Proposition 4.1. Proposition7.6.Let X be a norma1Q−factoria1projective variety with1og termina1 singu1arities.Let H be an amp1e Q−divisor on X.Let T≡・・p{左>0庫十ぱxi・n・f・nX}. 92 Ifωo∈κ∬,P(X)for someρ>1,then there exists a unique so1utionωof the weak K註h1er−Ricci丑。w forτ∈[0,T). Genera11y,クr*Ωvanishes or b1ow up a1ong the exceptiona1divisor ofπon X’un1ess the reso1ution is crepant.But if we consid.er a compact set K⊂X’\五”c(π)and restrict the pu11−backed−vo1ume form on K,it can be regarded as a smooth positive vo1ume form on the smooth projective sub−varie七yκ.From this point ofview,we genera1ize our prob1em. Proposition7.7.Let X be a projective manifo1d.Let∬be a big and−semi−amp1e ho1omorphic1ine bund1e over X.Let Kx be a ho1omorphic1ine bund1e associated−to the canonicaユdivisor on X.Let T…・up{オ>0!・。(∬十杁x)≧0}. Ifωる∈κH,ρ(X)for someρ>1,then there exists a unique so1utionωof the weak K気h1er−Ricci且。w forむ∈[O,T).Moreover,for anyδ>O,there exists0>0such that η 0 0 1≦8(ω(元デ))≦丁・戸・・(δ,T)・X where3(ω(左,.))is the sca1ar curvature ofω、 The e対stence and the uniqueness ofthe so1ution have a1ready been proven.We need on1y to show the estimate for the sca1ar curvature.If it is shown,then we get back to our smooth birationa1modle1X’and we may conc1ude that the estimate can be va王idated on any compact set K⊂X’\.肋。(π).We consider the exhaustion of X’\肋。(π)by compact sets K乞as we did in the proof of Theorem1.2.A−nd after that,we choose the diagona1sub−sequence which converges’on K1,K2,...,K{、菖y1etting乞→oo,we obtain the same estimate on・X’\亙”c(π). Proof o竿Propdsi七ioh7.8: P良….L・・Ωb…皿g・・hp・・iti・…1・血・わ㎜・・X・山…月∂∂1・gΩ.L・tθ be a K註h1er form on X.We suppose thatωる干ωo+ρ∂和。,wheteωo∈c1(∬)and 物∈P3∬p(X,ωo)for so血eρ>1−Here,ωo is s㎡ooth,semi−positive and−big on X. We observe the fo11owi㎎Monge−Ampさre丑。w: 細、一1・・(ω吉・・十字砺・)L・、, { ψ、1・一・=u(・,、), wh…ω・,・一ω・十奴十舳・d・・…1・g景・・…if・m1yb…d・df…∈(0,11・・dth・y ・pP・…h0…→0.L・t働、(t,・)…ω、,、十ρ∂∂¢、.L・七▽、,△、b・th・さ・・di・・t・・d Lap工a.dan oper就。rs with respect to the metric働、.In the proof,we use<・,・>、,!.‘、t0 denote the inner prod−uct and−norm with respect to the metric園、.Before ca1cu1ating,we …dt・・h・wth・f・11・wi・g・・tim・t・f・・細・ Lemma7.29.For any0<T’<T,there exists0>0such that on[0,T’1×X,for a11 ・∈(0,11, o ∂ σ 一一一0≦一¢。≦一十α 左 ∂之 亡 93 PR00F.Let ∂ ψ十…t一ψ、一¢、. ∂広 We ca1cu1ate (岳一瓦)ψ1一折・軌(・)…軌(叫一ω・β) =卜t・。、(ω。十剛≦η. By app1ying the maximum princip1e,we obtain ψ十一械≦ψ十㌧=o=一価(o,、)≦0. Therefore we have ∂ 亡一¢、≦ψ、十耐十σ≦0τ十0. ∂之 Weconsiderthefo11owingωo,、一p㎞risubharmonicfunctionsφ、satisfyingMonge−Ampさre equatiOnS (ω0,、十〉⊂了∂∂φ、)η二λ、Ω, { maxxφ、二0, ・・…ω・,・一ω…θ…ん≡垢…材・i…λ・i…抽・・m1・・・・・…f・・m above and be1ow for any8∈(0,1]andムωa、=ムんΩis satis丘ed一,we may app1y the Ko1odziej’s argume批to the equations.Thenφ、are unique so1u七io鵬。fthe equations−for each8∈(0,11such thatφ、∈P3∬(X,ωo,、)∩工。o(X).Therefore we haveム∞一estimates llφ、l1川x)≦0f・…y・∈(0,11・ Let ∂ ψ■≡τ一¢、十λ2ψ、一λφ、・. ∂カ We compu七e as fb11ows: (岳一九)ψ一一t・恥(t・・λ・ω郎・λ^1弧・)・(λ…)知一λ・れ ∂ …軌(λω・・…イ^∂∂φ・・)・(λ2・・)沖一λ2れ ・・((ωψ十(慕∂伽)η)去・(λ・・1)知一・肌 ・一(λ・・1)1・・(赤・・((ま)、)去一σ > 一0 where we used that£orμ>O we haveμ→λ1ogμ一0μ1/ηis uniform1y bound−ed from above forλsuf巳。ient1y1arge. By apP1ying the maximum princip1e,we obtain ψ一十0t≧ψ1。一・=^(。,、rλφ、・≧一σ. 94 This gives us ∂ 1一ψ、≧一λ2ψ、十λφ、・一α≧一σ一01. ∂亡 Remark7.2.From Lemma7.29,we obtain the fo11owing estimate: 0 σ θ■7Ω≦ゼ。8お、(士)肌≦θ丁Ω. By1e杭ing8→0+,we have on(0,T)×X, ・千0Ω≦ω(1)η≦・♀・0Ω. If T=○o,then by1etting之→oo,we obtainω二≧e−0Ω〉0. Then we can ca1cu1ate as.we did in the proof of Proposition6,1: ∂ 一8(お、(t))二△、3(働、(1))十1肋(お、(1))1書 ∂之 ユ ≧△、3(働、(亡))ト8(働、(亡))2, η and by app1ying the maximum princip1e to之8(δ、(左)),we obtain the uniform1ower bound in3: n 8(働、(t))≧一一〇n(δ,T)×X. む Since the ho1omorphic}ine bund1e∬is assumed tq be semi−ampユe,in other word−s ∬m=∬⑳…⑳H:mHi・g1・b・11yg・・…t・df・r・・宙・i・・t1y1・・g・p・・itiv・i血t・g・用, its1inear system ind−uces the hoiomorphic map, り■mHI:X→C1P〕dm星1m珂 where lmHl=P(∬0(x,mH))is the1inear system and dm+1=dim∬o(x,仇∬).In七his case,we b−ave c1(∬m):mc1(∬)=c1(π*0cpd肌(1)).This te11s us that we虹ay assu血e thatωo∈去。1(7r*0cpd㎜(1))is the pu1i−back of Fubini−Studヅmetric on C炉伽一 Since耳十TKx is a1so stin semi−amp1e,m’(∬十丁κx)induces the ho1omorphic map り1m・(亙十TKx)1:X→C〆㎜’星1m’(H+T一κx)l for su伍。ient1y1別ge m’∈Z>o.Then,we have c1(∬十TKx)=去。1(7r*0cpdm。(1)).This gives us that we may assumeωo+TX∈古。1(π*0cpd冊。(1))is the pu11−back ofFubini−Stud−y metric on ClPd肌・. We now treatωo andωo+τX as the puu−backed metric.Then we can do the same ca1cu1ation as we did in Lemma3.3.Therefore we obtain the foI1owing resu1ts; 1Lemma7・30.For any0<T’<T,there exist0,α,K,K!>0suchthat for a118∈(0,11 ・nd・n[0コT1×X, (・)(ポ△・)・・軌(ω・)・・(・・軌(ω・))L岬・軌(ω・)ll, 95 (・)(品一△・)・・軌(ω・…)・・(・・軌(ω・…))2一α1∀・t・軌(ω・・軌 (・)(ポ△・)1・…軌(ω・)・・t・軌(ω・)コ (・)(品一△・)1・・t・恥(J・…)羊・’・・山…)・ PR00F.Wemayassumethatωo ispositive,Thenwehavethefo11owingcomputation as we see in七he proof of1emma3.4. (品一八)・・軌(ω・)一一(ω・)疵(瓦)ん!{(ω・)ザ(叫戸(ω・)Φ(ω・)疵(・・)1(ω・)ρ1(・・)1(ω・)1! 1▽、t・お月(ω。)1三 ≦01働、(t・働眉(ω。))(t・ω。(働、))一 tr寛、(ω0) ≦0(t・働、(ω。))2一σ1∀、t・。与(ω。)1… wh…(凡)κ!二i・th・・・…t…with…p・・tt・働。・・惧苫i・th・1・w・・b…d・fbi…ti…1 curvature of五、(,which is inite since X is c1osed)。We obtain(2)in a simi1ar way.The estimates(3)and(4)are obtained by the computation三n曲e proof of Lemma3,3. 口 By the same manner in the proof of Lemma3.2,we can show the fo11owing estimates with usihg the estimates(3),(4)in Lemma7.30: te皿ma7.3i.For any0<T’<T,there exists0>0such that for a118∈(0,11and on [0,T’1×X, (1)0≦tr棚、(ωo)≦0, (2)一0≦t・磨眉(X)≦0. PR00F.Letψ…1ogtr①。(ωo)一λψ、whereλis a positive consta」nt chosen su舐。ient1y 1・・g・1・t・・.W・h…ψ1、一。一bgt・お、1、、。(ω。)一地(。,、)≦0・i・…(。,、)i・・虹・・七h・・dXi・ c1osed.Wehereafterca1cu1ateforむ>0.BythesamecomputationintheproofofLemma 3.1,we have the fo11owing: (品一瓦)ψ・…軌(ω・)一中十λ卜A・淋 :一t・優、(・4ω士,、一Kω。)十λ(叶・、) n 肌 肌 ω亡,・ ω士,・ ωO +λ1o・、(t)rλ1o・可一λ1o・百 ωz、 ≦ 一0か棚。(ωt,、)十λ1og −0η1ogカ十0 ω(τ)η ・一ση(蒜、)1ノη・λ1・・者肌一・η1・…σ ≦一0η1og之十0 where we used0−1がω8≦ω£、for t∈[0,T’]・λis chosen su伍。ient1y1arge such that 仙,ドKω・≧σω・,。・・川・・希一0肌(赤)1加≦0・B・…1・i…h・m・・im・m 96 princip1e,we haveψ≦0on[0,T’1×X.Sinceψ、is uniform1y bounded−from above,we obtain tro畠(ωo)≦0. Letψ;1ogtr①苫(ωo+TX)_λψ、.Bythesame argument above,we obtain0≦tr園、(ωo+ TX)≦0on[O,T’]×X.Thenwehave_0≦tr①、(ωo+TX)_tr園苫(ωo)二tr①、(TX)≦0.口 .With using the estimate(2)一0≦tr園畠(X)≦0forカ∈[0コT)in Lemma7.31,the fo11owing computation can be obtained: 品(知)一・伶)…臥(・)…(知)・α W・・pP1yth・m・・i㎜mp・i・・ip1・t・(品一△、)(紅一之0)≦0・Th・・w・h・・さ 旦。、.広。。旦ψ、1、、。=1。。(ω・!+ρ∂∂・(・,・))η.、、。。 ∂之’ ∂む’ Ω ・in・・w・h・・舳(・,、)∈ぴ(X)・ Therefore we conc1ud−e that there existsσT’>0d−epends on O<T’<T such that 知、≦0・lf・・之∈[0,T’1・(A・t・・11yw・h…品¢。≦0f・・t∈r0,T)wh…0>0d… not d−epend onτsince we have the estimate in Lemma7.29.) We can compute gs we did in Lemma6−1and then we obtain the fo11owing resu1ts. Lemma7.呈2.For any0<T’<T,we have on[0,T’1×X (1)△。(▽。)渚ψ。=(∀・)ラ△・岳ψ・十妾肋。ラた∂渚ψ・, (・)岳1▽叙1一・・時・ll−1軌細ト麻細・ほ・・叶・t・軌(・),晴・/、, (き)品(△、細、)一△、(△。細)一1市。細11一(お。)悔)㌦ラ柵細十△批、(x)。 士。t.k。・i・・k・t(2)1・L・mm・7,32,w・wi11丘・dth・t…b1…血・t・・血▽、t・。、(X). 士hi・!痂,i.・.,1▽、・・、。(X)llm…b・・・・…11・d・・m・h・w.A・t・・ny,thi・…も・…t・・11・d by the estimates(1),(2)in Lemma7.30.Note thatτtro、(X)=tr①、(ωo+Tλ)一tr優、(ωo). Hence,we have T21▽、七rの眉(X)1姜≦1▽、tr働、(ωo+TX)1葦十1▽、trの、(ωo)1姜。This te11s us that what we have to d−o is to choose su担。ient1y Iarge constantλ>0for the term tr棚二(ωo) and tr優邊(ωo+TX)・When computingin the proofofTheorem1・2,we de丘ne亨 ア■▽・如一三 0一綱‘ At this time,we need to de丘neアwith these he1ping terms: ・一 M・1・・一(一・){(一・…) wh…0>0i・・・…t・・t・・ti・fyi・g0・紅,i・d・p・・d・・t・fl・ We choose su舐。ient1y sma1161,62,63>0&s we did,in Section6and take su田。ient1y 1argeλsuch that Ol▽、t・。。(ω。)1…一〃1▽、t吃、(ω。)1…≦O, 97 σ1▽、t・①、(ω。十TX)ll一〃1▽、t・優眉(ω。十TX)1書≦0. Then we can compute with these constants as fo11ows: (品一∼)・二I帆綱トI軌苧二宗咋㌦(x),可細>・ ・(。キ)。吟 2R・<▽、1▽、細、1三,∀、細、>、 (ト細、)2 一(。劣)。1中1−21㌣祭帆1葺 ・(品川(…軌(ω・)・批(ω・…)) 一1帆綱il−1耐細11・…/▽・t・軌(・),可知/、 σ一綱、 2地<▽、細、,▽、戸>。 σ一綱、 ・(品一・)(λ・・軌(ω・)・λ・・臥(ω・…)) ・一・・ i筆。一(1一・・)帆差合1劣情,… 2地<▽、細、,▽、ア>、 一(1一・3) o一綱、 十01▽、t・園、(ω。十∼1書十01▽、t・働、(ω。)ほ 十〃(t・棚苫(ω。))2一λσ1▽、t・棚。(ω。)1… 十〃(t・園畠(ω。十Tx))2山〃1▽、t・優畠(ω。十Tx)1… ・一・・ i黒。一(1一・・)2Rθ<二色㍗・・ For any尤≧δ, (品一・づ((・1)ア)・十・・)2月θ<等号一δ)P)㍉ 1▽、品¢、は 一(之一δ)61 +ρ十0 (0一綱、)3 2地之ウ、細、,ウ、((トδ)ア)>、 ≦一(1一・・) o一綱 一(τ一δ)・。0P2+P+0 We may assume that(τ_δ)P achieves its maximum at(む。,20),左。〉δ,宕。∈X,Then we have at(to,あ) (1rδ)・。σP2≦P+0, 98 Hence there exists01>0such that (τ一δ)P≦0。・n[δ,τ’1×X. We de趾e g as fo11ows: 9・一 凵ヒぎ(x)・・ア where B>0is a constant choseI1appropriate1y1ater. since we have_0≦tr賃、(x)≦σ,we obtain lx1言≦0. i岳一。)(・如・t・軌(・))一欣知・・(軌付1・紬知・1・1 一・ 一 ∂ 一 ∂ ≦1∀、∀、一¢、ほ十1x1三十1▽、▽、一ψ、ほ十1x1言 ∂之 ∂亡 =F ∂ ≦21帆〆1・σ (品一八)9・一別帆岳咋≒(妻チ)凧紅; 一2月e< ・一 G毎㍗・・ i筆2−2月ε〈暮導牛・・ for son1e constant j3>2. For any之≧δ ト)(ト1)・)・一2舳誓青δ)9)㍉ 斗1)(・一品軌)(書1;。・… 2庇・▽、知、,▽、(トδ)9)>、 < 一 . σ一綱、 一0(広一δ)92+9+0・・[δ,T’1・X where we used(τ一δ)ア≦01 0n[δ,T’1x X. We m−ay assumethat(之_δ)9acbieves its maximum at(島,26),叱>δ,zる∈X.Then we have at(垢,z6) 0(tもδ)92≦9+σ. Therefore there exists02>0such that (トδ)9≦0… [δ,T!1・X、 99 This gives us △。細、十t・真由(X) 一(t一δ) ’≦0。一B(トδ)ア≦0。. 0一綱、 ・in・・B(τ一δ)P≧0f・・尤∈[δ,T’1. There e対sts03〉O such that ・(軌)べ知一t・軌(・)・、警、(・÷) 02 0 ≦トδ(〇十7) 03 03 ≦丁・7・・(δ,T’1・X・ Since the upper and1ower bound is uniform in8一∈(O,11,by1etting8→0,we have the eStinユate η 0 0 1≦3(ω(τ1・))≦丁・戸・・(δ1T)・X・ 口 7.6 Proof of Th←orem1.3an(1Coro11ary1.1 ProofofThebrem1.3 PR00F.Let X be a norma1Q−factoria1projective varietγ Letπ:Xノ→X be a reso1ution of singuユarities.LetΩbe a smooth vo1ume form on X andλ=ρ∂∂IogΩ. For each compact setκ⊂X’\亙”c(7r),we consider(7r*X)1κ≡〉二子∂δ1og(7r*Ω)1K as a …t・i・ti…fπ・XtgK.柵・d・丘・・ π*ω毛,、…π*ω。十亡(π*X)lK+・θ’ where伊is a K註h1er form on X’. Let ψ,・)…π*ω乏,、十ρ∂∂ψ1. Let▽二,△二be the gradieI1t and La・P1acian operators with respect to the metric働二一For any compact set K⊂X’\亙”c(π),we may consider the fouowi皿g Monge−Ampさre且。w: 紙一1・・(㎡ω{・綿旨∂ψ二)れ一・。・・(・,・)・K, { 如一・=π*u(・,。)・nX’, whereψ二∈σo。((O,T)x X’\亙”c(π))withψ二(τ,.)∈P3∬(X’,π*ωt,、)∩ム。。(X’)for a11 1∈[岬・・d…h・∈(0,11・・d・・…1・g景・・…if・・m1yb…d・df…∈(0,11・・d they apProach O as8→0.We can make the same argument㎜der these circumstances as before,and丘na11y we obtain the fouowing estimate for any cdmpact set K: η o o 1≦3(園1(ち・))≦7+戸・・(δつT)・K・ 100 We丘xδ〉O arbitrary and choose a sequence{δ山such thatδ乞→δas4→oo.As we d−id in the previous section,exhaust X’\亙”c(π)by compact sets K乞with K乞⊂K{斗1 and U{K{=X’\亙”c(π)・Let Ol≡[δ4,T)x K4・Since n¢二11ぴ(o二)≦q,we can・hoo・e th・di・g…1・・b・・q・・…{ψ1包,、}1…hth・・it・・・…g・・㎝01,01ゾ・・,01・Th・・w・h… ψ1、,、→〆i・ぴ・・(δコT)・X’\趾(π)・ Therefore,we have 3(働1毛,、(之))→3(ω’(1))i・σo。・・(δ,T)・X∫\肘(π)・ whereω’:π*ωt+〉二工∂∂ψ’.Hence we obtain η σ o て≦3(ω’(左))≦丁・戸・・(δ,T)・X’\趾(π)・ Since〆…constant(t)on ea.ch connected−component in the iber of7r,〆natura11y d−escends toψ,which is the unique so1ution of the Monge−Ampさre且。w on(OコT)×X、、g as we see in Proposition7,6.Hence we have for anyδ>0曲ere exists0>0such that η 0 0 −7≦3(ω(乙))≦不十戸・・(δlT)・X・… 口 Proof of Coro11ary1.1 PR00F.Recau that we de丘ned the singular time T=sup{亡>01∬十広Kx is nef on X}, where∬is an amp1e Q−d−ivisor on X.Therefore the we&k K或h1er−Ricci且。w has a unique so1ution for t∈[0,oo)if the canonica1d−ivisor Kx is supposed一一to be nef.At this time, with using the estimate in Th−eorem1.3,the sca1ar curvature3(ω(尤))converges to O in Ooo−topo1ogyonX・・gas乞→oo・ 一口 7.7 Proofof Theorem1.4 Let X be a norma1Q−factoria1projective varieties with1og terminaI singuIarities and ム:X」>P”be a projective embedding of X.Letπ:X’→X be,a reso1ution of singu1arities.We assume that the canonica1divisor Kx is nefand big on X.First1y,we prove the fonowing Proposition: Proposition7.8.Let X be a norma1Q−factoriaI projective variety with its canonica1 divisorκx is nef and big.Letπ:X’→X be a reso1ution of singuIa’rities,Then the pu11−backπ*Kx becomes semi−amp1e. PR00F.We丘rst1ytake advantage ofthe projection formu1a: (π*0x(K’x).0)=(0x(Kx).π。0) where O is an arbitrary given curve on X−This gives us thatπ*0x(Kx)is a1so nef since we assuIned Ox(Kx)is nef.Note that the isomorphism7r*0x(Kx)空0x’(π*Kx)can 101 be obtained−On the other hand,app1ying Coro11ary2.2to the smooth projective variety X’,we have the isomorphism Pic(X’)皇Pic((X’)ん),which ind−icates that we may id−entify an invertib1e sheafin Pic(X’)and a ho1omorphic1ine bund−1e in Pic((X∫)ん).Since we h&ve the isomorphism betweenπ*0x(Kx)and Ox。(π*Kx),they are associated to the same ho1omorphic Iine bund1e工∈Pic((X’)ん).7r*0x(Kx)is nef means that L must be nef, in this case we have∫フ払五≧0for any curve O on X,where∼is a smooth亘ermitian metric on刀and一私、is the curvature associated−to帖.Since L is nef,we may conc1ude that Ox。(π*Kx)is a1so nef,Second1y,Kx is assumed−to be big,that is,kod一(X)=肌 Since Ko(iaira。一dimension is birationa1invariant,we have kod(X’)=η,which means Kx’ is big.Therefore,π*Kx is a1so big.We here use the base−point−free theorem.Since π*Kx is nef and−big,mπ*Kx−Kx。=(m−1)7r*Kx一Σ:ξ=1α4風becomes nef and big for su伍。ient1y1arge m>O,Thatπ*Kx is semi−amp1e can be conc1ud−ed by the theorem.口 We now app1y the argument of section3with Ca1abi symmetry condition and sub− section7−3to this occasion.Let{町{=1,...,,、十1be an open cover ofX.We start with the initia1metric satisfying Ga1abi symmetry condition on−a P1−bund−1e仰N:狸(£)→X,eg, whi・h・・ti・丘・・th・i・・m・・phi・mπ長凧)塞いP1・A・dth・P1−b・・d1・・・・…g・・t・ X、、g in the Gromov−Hausdor症sense,Then we may co耳sider that each丘ber conapses to a pointξ({),o∈A1\{0}as之→坤。,where7加indica.tes the丘早ite singu1ar time of the K邑h1eトRi㏄三且。w on the P1−bund1e.From Proposition7.9,π*Kx can be regard−ed as a semi−amp1e divisor under the assumption that Kx is nef and big.Reca11that we−de丘ned the singu1ar七imeτ…{t〉0,五十カ∬is semi−amp1e}i早戸roposition7.5.In this situation, two ho1omorpHic Iine bmd−1es工and一五’a土e associated to the degenerated formω(η。), which is semi−amp1e and big,and the se平i−amp1e divisorπ*Kx respective1γThis gives us tha.t T:oo,tbat is,the K註h1er−Ricci且。w can be continued starting with the1三miting d・g・・…t・dm・t・i・ω(坤・)・・dth…1・ti・立・・i・t・f…11tim・之∈[0,.あ).宜・…w・… ・b・・…it・砕・・…士g・・・…X、、、.W・・h・w・dth…tim・t・f・・tk・…1・・・・…t… 。fth。。。1。・i。。i。士h。。。・血1.3。。dth。。。。。。。g。。。。。。。・1・i.C。。。11包。。1.1G.mbi.i.g th…,w・・…包iid・t・・…1・imi・Th・…m工.4with・・i㎎th…血…g・血・・ti・lk・ proof of Lemma1.1. PR00F.Weusethesamenotati㎝sde丘nedinsection4早nd5.A批erthe舳itesingu1ar time ofthe K註h1er−Ricci且。w on the Pl bund−1e over七he smooth projective variety,we can compute onσづ×{ξ(乞),o}as fo11ows: ω(1):(α。十・1(ρ))帝/*ω珊十月・ζ(ρ)∂ρ〈∂ρ 1 _ 二(αオ十・1(ρ))市1*ω珊十月 ・1’(ρ)▽ξ(旭),。〈▽ξ(屯),。 iξ(1),612 and (1) ω(広)η=(αt+仙1(ρ))η(市1*螂)n、 ω(t)is a unique smooth so1ution for広∈[0,oo)and−its convergence resu1ts we obtained in the previous sub−section.are as£o11ows: (2) ω(左)→ωoo inσoo onX,eg asカ→oo 102 and (3)3(ω(1))二一t・、(f)(月∂∂1・gω(1)η)→3(ω。。)=0i・0oo・・X、、。・・1→・・. From(1)and(3),we must have ・・一(・)一 (4) i月∂∂1・・(α{1(ρ)))→…ふ・。・・1→… This gives us (5) ・・一(・)(ρ帆(ρ)(α・。刊」(ρ)))一・・一(1)(月∂州∂舳) for a11ρ∈(一〇〇,oo),whereαoo≧O. We can ca1cu1ate as fo11ows: (6) {(α。。十心ρ)以(ρ)一(仏(ρ))2}t・、(。)(^∂ρ〈∂ρ)十(α。。十・」(ρ))・二(ρ)t・、(オ)(1*ω。。)=0. (6)is equiva1ent to the fo11owing equations(7)and(8). (7) (α。。十刎」(ρ))心ρ)=(α二(ρ))2 (8) (α。。十叱(ρ))叱(ρ)二〇. As we did−in the proof of Lemmaユ.ユ,we need on}y to observe the fonowing two cases. Case1:u」(ρ)=0for a11ρ∈(一○o,oo) Inthis ca.se,ω(之)→α◎oπ差Nム*ωF8as t→oo.Ifαoo土0,it contradictsω(之)_今ωoo>O on X,eg.Thus we have α。。帝ム*ω加:α。。ム*ω用=ω。。・nX、、。. 」Case2:枇よ(ρ)=0石。r auρ∈(一〇c,oo) F…h…m・・・・…i・lh・p…f・/七・mm・1.1,w・m…h…叱,。。(ゼ1)三0f・1 a11ρ∈(_oo,oc).Then we must have u」(ρ)…6。。≧0for a11ρ∈(_oo,oo)since ul(ρ)一6t=一七ρひZ,。。(e一ρ)→0as t→oo.If6。。=0,then this means Case1.We consid−er the caseわ。o>0.Then we have ω(t)=(α。十・1(ρ))市1*ω。。十^・z(ρ)∂ρ〈∂ρ →(α。。斗6。。)帝乙*嚇 asτ→oo for anρ∈(_oo,oc),whereαoo≧0, Hence we obtain (α。。十う。。)帝・*ω冊=(α。。十う。。)ム*ωFザω。。・nX、、。. In both cases,we have 1 3(cooム*ω〃)二一8(ム*ω冊):0onX、、g, c◎o where co〇三α◎o+6oo>0. Wethereforeconc1udethat the sca1ar curvature of乙*ω用is equa1to zero on X、、g、口 103 IえefbrenCeS [Au] Aubin,、T. MoηZ伽εαヅ α肌α伽乞5 0η mαη助。”5. Moηgε一λm加rε εψα伽肌5. Gr㎜d1ehren der Mathematischen Wissenscha筑en,252.Springer−Ver1ag,New York,1982. 1AHl Andrews,B.,Hopper,G.r加肋。c乞FZoω伽励emα肌肌4αηθθomθかμ二λ0om一 μθオθPηooゾ。ゾ肋εD倣εηem切αωθブ/4−P伽。ん伽g助んθヅε丁加。グθm,Lecture Notes in Mathematics,2011. [Br]’ @ Brend1e,S.励㏄乞〃。ωαηd肋e助加re rんeoグθm,Grad−uate Studies in Mathemat− ics,111.AMS,Providence,RI,2010. [Ca1] Ca1abi,E.肋か舳αZ K肋Zεヅme切。5,i早Seminar on D岨erentia1Geometry,pp, 259−290,Ann.ofMath.Stud.,102,Princeton Univ.Press,Princeton,N∴J.,1982. 1Caol Cao,H.一D.D4ormα肋。ηoアKδんZεr meか乞。5左。 K肋Zεr一亙乞η8加納me伽。30ηcom一 ρα・ぱ舳ヅ.m㎝ψ眺,I・…t・M・th・81(1985),…2,359−372・ [CKl Chow,B.,Knopf,D.r加珊㏄乞刀。肌λη∫η炉。仇誠。η,AMS,Providence,RI, 2004. [CLN1 Chow,B.,Lu,P−and Ni,L、∬α叩倣。肌な励。c乞ガ。ω,Gradua.te Studies in Mathe− matics,77.AMS,Providence,RI,2006. 〔CLNGユChow,B。,Lu,P一,Ni,L.,G1ickenstein,D.,et aLτ加地。cづガ。伽蛇。んη勿伽e3α肌∂ λρμ乞。αれ。η3ρα竹ム。θomθか4oλ3ρec左3,AMS,盲rovid−ence,RI,2007. [De] DeTurck,D.M,Deア。rm伽g me伽。5伽妨e d伽ec肋。ηo∫挽eか励。cれeη50r5,JoumaI ・fDi冊・…ti・1G・・m・t干・18(1983)1…1115中2・ [EGZ] Essid−ieux,P.,Guedj,V.and Zeriahi,A.λρれ。れム。。一θ3批mα加5加r加geηθmτθ comμ鉗Moηgε一λm加佗θψατづ。肌8,preprint,a.rXiv:0712.3743. 向。] Fdhg,T.一H.F.0η肋εco〃αρ5切g m加。プ流εK肋Z鉗一地。cづ刀。ωψ批んガη批e一切me 5伽g仙Zαヅ乞勿ラpreprin七,arXiv:1112.5987. [Fr] Friedman,A.Pα棚αZ D蜥θ肥η批αZ万g伽α切。η30ゾPαmわ。Z4c助ρε,Prentice Ha11. 1964. [FZ]. Fong,T、_H.F.,Zhang,Z.τ加。o〃αp8切gm施。プ流θκδ”θツー月4ccゼβoωω批んグegωαザ 伽力η伽切mθ8切gωαれ左V,preprint,arXiv:1202.3199. [Gi] Gi11,Ml.0o〃αρ5切g oゾ〃。伽。おαZoηg肋e K肋Zεツー捌㏄づガ0ω,preprint,arXiv: 1203.3781. [GH] Gri租ths,P.,Harris,J.Pr伽。勿Zε80プ〃gθ6m乞。 GeomeかV,Pure a.nd ApP1ied Mlathematics.Wi1ey−Interscience,New Yorkラ1978. 104 [GT1 Gi1barg,D.,Trud−inger,N.S.捌伽切。 Pα州αZ D蜥εヅe耐4αZ亙ψα切。η80ア8ec− oηd Or伽,Grund1ehren der Mathematischen Wissenschaften,224,2nd edition, Springer−Ver1ag,New York,!983. [Ha1 Ha.mi1ton,R.τ伽ee−mαη伽Zゐω批んρ08肋ηε月4cc乞。刎mα地ザe,J.Di任.Geom.17, 255−306(1982). 陣・・1 Hartshome,R.〃gε6mたθθomθ師,Graduate Texts in lMathematics52, Springer−Ver1ag,New York,1977. [Hi1 Hironaka,H.月θ80んれ。ηo!8伽g刎Zαザ物e30!αηαZgeろm北〃鮒加物。〃eグαガε〃。プ 。んαmc左θれ3れ。 zεηo,Anna1s of Ma.th.79(1964). [K・11 Kawamata,Y.〃gε6m4c吻伽加8、(Japanese)Kyoritsu Kouza21seiki no Suu− gaku19.Kyoritsu Shuppan,1997. [K・21 Kawamata,Y.0η抗eαうu棚αηce肋θo陀m乞η枕e cα8εoゾμ=0,preprint, a.rXiv:1002.2682. 1Ko1 Kgbayashi,M.工εc柵rε50η〃gεうm4c Oeomθかひ.(Japanese)SGG1ibrary64. Saiensu Sha,2008, [Koj11 Ko1odziej,S−Tんε0omμε”Moηge一λmρかεε卿α加。η.Acta Math.180(1998),no. 1,69−117. [K・j21 Ko1odziej,S.胱α棚物。プ30Z砒肋η5τo挽εMoηgε一λm加ヅεo肌。omραακ肋加ヅmαη一 ψoZゐ,Indiana Uhiv.Math.J.52(2003),no.3,667−686. [K・j31 Ko1od−ziej,S.∬δ〃εr co耐伽刎物。!8oZ伽亡づ。η8亡。挽e comμε”Moηgε一λm加reεψα一 方1・ηω肋伽吻肋んα〃・漉伽〃.・τんθ・α・θ・∫・・岬α・右κ肋1θヅmαψ脇, preprint,arXiv:061105ユv1. [N・1 Nakayama,N.Zα桃伽加。o肌ρ05肋。れαηdα6刎棚αηcθ,MSJ Mlemoirs,14.Ma七h− ematica1Society of Japan,Tokyo,2004. [PSS1 Phong,D.H.,Sesum,N.and Sturm,J.MuZ柳伽r拠θαZ5んeαηe5α棚洗εK肋Zか 励㏄乞刀。ω,Gomm.Ana1.Geom.15(2007),no.3,613−632, [S・1 Song,J.F伽伽挽mεθ批伽。伽ηoプ流εK肋Zεヅ1揃㏄づ刀。ω,Preprint,arXiv: 0905.0939. [Se1 Serre,J.一P.G6om6伽e刈g6うれψεe之G6om6切εληαZツ切ψε,Ann,Inst.Fourier6 (1956),1−42. [SSWl Song,J.,Sz6ke1沖idi,G.and Weinkove,B.肋θκ伽eグー肋。げ。ωoηρヅ。畑物ε ωη〃θ5,to appear in IMRN,preprint,arXiv:1107.2144. [STll Song,J.,Tian,G.τ加K肋Zεr一揃。c4βoωoηm伽づmαZ舳げαcε50プρ08乞広伽εKodα伽α 肋・肋㎝I・…乍.M・th.170(2007),…3,609−653・ 105 [ST21 Song,J.,Tian,G.0αηoη化αZ mθα舳rθ5α〃K肋Zθツー地㏄づガ。ω,preprint,arXiv: 0802.2570. [ST31 Song,J.,Tian,G.肋e K肋Zεr一揃㏄4刀。ω¢伽。刎gん8切gωαr肋ε3,preprint,arXiv: 0909.4898. 1ST41 Song,J.,Tian,G.3o秘ηd伽g8cαZαr c砒mα施肥∫orgZoろαZ50Zω4oη50ゾr加κδんZετ一 揃㏄4穴。ω,preprint,arXiv:1111.5681. [SW11 Song,J,Weinkove,B.丁加K棚εr一助。げ。ω㎝肋z伽㏄ん8切αcθ8J.Reine Angew.Ma尤h.65g(2011),141−168, [SW21 Song,J.,Weinkove,B.0㎝之㏄広物郷ψo肌α1伽乞80r8物肋θK舳er一助。げ。ω, to appear in Duke Math.J.,preprint,arXiv:1003.0718. [SW31 Song,J.,Weinkove,B.Zθcωヅ“o亡θ5㎝伽K伽θツー肋。げ。ω,preprint,arXiv: 1212.3653. [SYll Song,J.,Yuan,Y.K肋2εザー地㏄乞刀。ωo肌0α2α林地u mαη乞∫oZd8,AL1M21,Ad− vances in Geometric Ana1ysis(vo1ume dedicated to Professor Shing−Tung Yau), 119_138. [SY21 Song,J.,Yuan,Y.M一θか4c仰ρ8ω肋0αZα碗α肌ムα左z,Geom.Funct.Ana1.22(2012), nolユ,240−265. 1TZ1 Tian,G.,Zhang,Z,0η栃εκ肋Zeツー励㏄4ガ。ωoη〃。加。τ伽θmαη伽〃30ゾgεη鉗αZ 右mθ,Chinese Am.Math.Ser.B27(2006),no.2,179−192. [Y・1 Yau,S.一丁.0η肋ε肋㏄乞。刎㈹α施ηe oゾαcomραc古K励Zer mαη伽〃α棚流θcomρZeエ Moηgθ一λmρ伽θψ〃。η,Comm.Pure App}.Math.31(1978),339−411. [Yu1 Yuan,Y.0η挽εcoη〃θηε肌θoゾαmo励伽d K肋Zぴ一揃㏄づ刀。ω,preprint,arXiv: 0905.4268. [Zh11 Zhang,Z.0ηDegθηθm加d M’oηgθ一λmρ伽θ亙ψα挽。η30〃θr OZ03ε∂κ肋2eザMα初一 ∫o〃.Int.Ma.th.Res.,Not.2006,Art.ID63640,18pp− [Zh21 Zhang,Z.Degθηerα加d Mo几gε一λmpεrε 亙g伽α切。η3 0〃er・Proゴθc亡伽θ Mα肌乞∫oZd5. PHD Thesis at M1IT,2006. 1Zh31 Zhang,Z.λmo幽伽d K肋Zθr一揃㏄4月。ω,白reprint,arXiv:0801.3473. [Zh41 Zhang,Z.3cαZαr cuグUαfuηe6o刎ηd∫or KδんZer−Rづ。c乞∫毒。ω50ηer mづη4mαZ mαηψo〃8 0ゾgθηem㍑mθ,Int.Ma七h.Res.Not.2009;doi:1093/imrn/mp073. [Zh51 Zhang,Z.κ肋Zεツー肋㏄乞刀。ωω乞挽加geηεm乏e伽肋αZ oZα33,Preprint,arXiv: 0909.5446. [Zh61 Zhang,Z.8cαZαザ。刎ヅηα亡刎ヅe6εんα?カ。r、戸。rガη批e切η7ε5づηgωαれ勿ρ戸Kδ〃er一月化。乞 ノラ。ψ,1Michigan Math.J.59(2010),no.2,4ユ9−433. [Zh71 ZhangラZ.地。cづ2oωぴう。刎ηd∫oヅKδん2e㌃励。cづガ。ω,preprint,arXiv:1110.5954. 106
© Copyright 2024