Title On unit group of commutative algebraic groups Author(s) AMANO, KAZUO Citation [岐阜大学教養部研究報告] vol.[7] p.[157]-[161] Issue Date 1971 Rights Version 岐阜大学教養部 (Dep. of Math. , Fac. of Gen. Educe. , Gifu Univ.) URL http://repository.lib.gifu-u.ac.jp/handle/123456789/47444 ※この資料の著作権は、各資料の著者・学協会・出版社等に帰属します。 157 可換代 数群 の単数群 につ いて 尼 野 岐 阜 大 一 学 教 夫 養 部 ( 1971年10月30日受理) On-unit groull of commutativealgel】raic groups K Azuo A MAr、 ,0 Dep. oJ M(1th. , Facレ oJ Gen. Educ. , Giμ Un叱 ( Received Oct. 30, 1971) lntroduction L et A; be a locan y compa6t field under a discrete valuation. A s is well known, the proper ties of the multiplicative structures of A;, in particular those of the unit group ol k, play important roles in the theory of local fields. ln the present paper, w e shall show some proper ties of unit group fりr commutative h near algebraic groups which generali ze unit theorm in ん. N amely, in S ection l , w e shall introduce similar the valuation of ん. ln Section mapping on l inear 2 , we sha11 consider two algebraic groups as special ser ies of matr ices w ith el ements in ko T he ser ies have same proper ties as ! ogar ithm and exponential in・ local field乱 ln S ection 3 , w e shall give unit theorem for any ゝ commutative l inear algebraic groups. A nalogous r esul ts in the case of local fields are well known 〔 5 〕 . ( T hrough this paper, w e shall use the following notations. ん : the locally compact fie1(L under a discrete valuation ひ, p : the va l uat ion r i ng ol k, p : the maximal ideal of o, and let (p) = y , G : the commutative algebraic subgroup of general line乱r group G£ 0 , 幻 , び : the subgroup of G consisting of the elementS χこ ( xJ) such that xij eo ( 1≦f, j ≦O and ひ(det X) = j . The group び will be called the unit group of G, び(″ ) : the subgroup of ひ consisting of the elements χ = ( 亀j ) o mod 丿 口 ≠ j ) and 恥j ≡ l mod げ 口 = j ) such that 心j ≡ f or 17= 1 , 2 , 3 , ‥‥‥ ‥ 158 尼 野 一 夫 §1 . Generalized valuation rl e a a map m ap g :: M M (( n, n , k) k ) → → W e define g Z by b y putting p u tt i n g g (( X χ )) = = m紬 m in Z g O (( X ij 0 ) は or a m a t r ix X= ( 勾 ) where 訂0 , 幻 is the full matrices algebri , and Z is the set of rational integer s. T hen, the map g satisfies the follow ing proper ties P Roros171. (1) 1 ( i ) g( X十y) ≧min隔 ( X) , 副: y) ¦ ( ii) g ( X y) ≧g ( X) 十g ( y) ( iii) g ( 入X) = g( X) 十べ 幻 , 釦r m(LtTice8 χ and Y 伍 M ( 孔 八 ) , a71d μ ・r a e& meM λ 伍 k、 P nooll ( i) , ( ii) ; F or gy Jn matr ices X 二 ( 亀j ) and y 二 ( 馬j ) , w e have, 副:X十y) = 瀬 川べ勾 十如 珪 ≧呻川min卜(あバ), べ仰 ) 目 ≧min卜 ( X) , 研 y丿 g (Xy) = min卜(ぷ勾 力川 ≧m回 向 n卜( 恥バ) , 削:妙 ) 口 ≧UJ(。X ) 十g( y) ( iii) ; For an element 入 in だ, we have ヽg( 入X) = 瀬芦卜( λ亀八) } = 町阻隔( λ) 十ベ亀j ) l = 衣 λ) 十g ( X) . C oRoLLARY 1 . g ( X つ≧ rg ( X ) , yor r = 1 , 2 , … … P RoPosITIoN 2 . The gToup U (″ ) con8 1sts oJ 硫 e ete・ ent χこ ( 亀j ) OJ U 8UCh th(l t g( χ一刀≧ 1ノ, 切heTe 1 18 伍e identi切 m(1tT謐. P aooli l t is tr ivial by vir tue of the definitions of the group び(″ ) alld =the °ap 麗ノ. ` I - §2 . Logarithm and Eχponential ln this section, w e shall consider the follow ing ser ies of matriχ χ= ( xi) in the group G. ( L) : χ- χy2十χy3- ‥‥‥ ‥・…・十( - 1) 一次ソr十‥‥‥‥ ‥, ( E) : 7十X 十X y2! 十‥‥‥‥‥‥十X ソ7-! 十‥‥‥‥ ‥, F or nilpotent matr iχ, P ROPOSITION 3 , (1) Cf. 〔 6〕 it is tr ivial that the ser ies ( L ) and ( E ) converge. Th,e se石 es ( L ) conlJeTge8, §3 . 2 汀 伍 e ma計 謐 χ sat18μ es u ( χ) > o. 可換代数群の単数群 につ卜て P aooE. L et 戸 ≦ r < 戸 4¯l T hen w e have 159 for an integer (z, and J et X ゜ ( j ; )) . g ( X ソ 杓 = g ( X つ一 球: 絢 ≧rg ( X) - e叫 ≧アg ( χ) - e tog声 lf g ( χ) > o, χソ r → P RoPosITIoN 仁 ∽ as r → T he se石 es ( E ) ∽ and therefore the series ( L ) converges. conlJeTges, 汀 伍 e ・ atT謐 χ 8(1t18μ es w ( χ) > eyp - j , P RooF・ L et r 二 co十 c炉十 … … 十 (司八 and y ; ≦ r< だ け t w here 醜 and ci are rational integer s, o≦ (≒≦ p- j . T hen w e have 心 二 r- s( r) / p- J, w here 収 杓 = co + … … 十 cs T herefore we have ぶしX ZtX) ≧~ ( X) - eレ ーれ: r) に p- j = r卜 ( X) - eZp一万+ 9 ( 7) /p- 1. Since s( O is・ positive, we see that X ソ 7`! → ゛ as r → ゛ , if g ( X ) > eZp - j A nd hence the series ( E ) converges. 十 D EElsITloぷ) W e shall denote the ser ies ( L ) Now , we suppo叩 and ( E ) byL 昭 ( 7 十 X ) and E χp ( X ) . that a matr iχ χ satisfies 籾( χ) > eZT) - j . T hen for r> J, we have ぶしX ZrX) 一司 X) ≧ O - j ) g ( X ) - reZp- j 十卵 0 ) ZT)- 1 ) e卜( 約- j随一7≧o, and g ( X ソ約 一司 X) ≧ O - j ) 司 X) - eら こ > e { ( T - 1 ) - ( α こ 川 か - 7 ≧ o . T herefore we see that g ( E Xp X - 7) ≧ m and g ( L 昭 ( 7十 X ) ) ≧ m, when g ( X ) ≧m for positive integers m> eZp - j . T HEoREM, 1 . が g ( X ) > eZp - 1, then lJXe haoe E即 ( LOg( 7十X) ) こ 7十X and LOg( E聊) X ) = X, P RooF・ T he formal identities ar e known, and all the ser ies converges by above asser tion. §3 . Some properties of uni.t group F or any matr ices X 二 =( xJ) and y = ( !Jij) , w e can define a ∧metr iχ by putting d( χ, Y) = Nij X-Y), where ≒ is the absolutenorm. Then themetric induces a topology in 趾 ( 馬 幻 in the usual manner (で T herefore the algebraic group G has the induced topology such that the group び(″ ) are the neighborhoods oI I . ぐ? ぐ3 jj C£ 〔 1〕 , C石叩. χ l . §2. n eorem l and 3 Cf. 〔 6〕 √§3 and §4. 3 160 尼 P RoPosITIoN 5 . P RooF・ 野 一 夫 Tke g To叩 8 U c lnd U (″ ) (1Te compαd sJ , groizp oy Gご び(o has finite index in び and び= proj - lim UZU (o By vir tue of Prop・ 5 ・ the lllap ひ(j) X Z 6 ( X , α) → X £ U (1) i s extended to the . map び(1)X Z 。 9( X , α) → and p- adic integer s, W e set L Og U (゛ )= 雫(叫 T hen, rphic to び(゛) since theorem j . if m> e/ 7) - j , 雫(゛) is Z r isomo- W e dence by s the rank of Z 。- modリle¥雫 師) ・ ◇ PaorosITlo1 6 . F or a ・ at石χ Z e U い, 切e h(1ue L og Z = 0, 廿 (1nd o峠 丿 廿 Z t = j; u) heTe O is ze7ヽo ・ a tTiχ and m 18 an 振 tegeT. P R00F・ l f Z is an unipotent matr ix, w e have Z = E Xp ( L Og Z ) = E Xp O = jl T herefore we suppose that Z is (1 sem i- simple matr iχ. l f Z ゛ = 7; L Og Z = L og Z ゛= L og lこ 0 , and hence L Og Z こ 0 . Conver sely, we have m for lx> eZ1) - j and sufficiently large integer m, w e have Z ゛ e U (″ ) and hence Z゛= EXp( m`L og Z ) = EXp O= I。 T HEoHEu. 2. ヽ7 yxe7 e exjsX 岳 e eleme71Xs /11, j4 2 , … … , A o SUCh 伍 (1t A = Z j 71/1; ……j ; ソoΓα71!/ ノ1 6 び( )`, 切heTe Log Z = 0 α71d α。 ( 1≦ j≦め aTe the d e・ ent8 0J Z p● P RooF・ 雫 (j) cnntains 畢 伽) a71d j (1) has finite index. as p(叫 L et j 1, j 2, are £ og ノ11, £ og ノ12, … … , ノ1. T her efor e 叩 (J) has some rank s be the elements of び(1) such thi t the basis of 串 (1) ‥‥‥‥ ‥, L Og A i. T hen our theorem fol low s from above me- ntion and prop. 6 . . L et £ be the raりk of p over Z 。 . T hen w e have the fol low ing. CoRoLLARY 2 . IJ G is an u戒 potent g7ヽ oup, 8 = X dim G P必oE. T he L ie algebra(4) of G is L og G, and L Og maps び onto ( ド (li°勺 for 1ノ> eZp- 7. The ideal t, has the rank £ and hence we have` our corollary. COROLLARY 3 . P RooF・ 1L f G iS k- Split tOTi, S ince G is A;- sPlit, G≧ S= X d im ド Å ; 米 0 (4) Cf. 〔4 〕 , Ch l). V. §3 , 朽・op. 14 (5) Cf. 〔 5〕 ,J I . §15. e) 4 G (? ] where A;米is the muh iph cative 可換代数群の単数群につ いて 16 1 group of A;. T herefore our corollary is the unit theorem in local fields T HEoREM 3 、 F 07` an!j positi lXe 振 tegeT m, th t, び 切(しA ) > 皿 j = A; PaooE. theTe ex18ts (l posititJe k tegeT N such Jor a71 eleme71t Ao6 び已 L et f ≦m< p 1 :for an integer r. I L we take N > eZp一j + er. g ( £ 昭 j ) g( L og y1) > X Since g (ム Z/ m L og y1) = g ( £ og /1) 一祠:m) > N - er> eyp- 1, £ 卯 ( 1Zm L og A) = 爪 is convergenc9. Open question. (i) Since any commutative algebraic group G have a decomposition G。χG。, where Go and Go are the semisimple group and the unipotent group of G. W e ask whether the rank s can be required explicitly in the group Gj . (ii) Theorem 3 1nduces analogy to the power residue in algebraicnumber fields. W hat means the power residue in commutative algebraic groups ? References 〔 1 〕 E . Artin and J. Tate, Class field theory. Harvard ( 1961) 〔 2 〕 A. Borel, Groupes lin6aires algebriques. Ann. of Math. 64 ( 1956) 20- 82 〔 3 〕 A. Bore1, Linear algebraic groups。 .Benjamin ( 1969) 〔 4 〕 C. Chevalley, Th60rie des groupe,s d6 Lie. Hermann ( 1968) 〔 5 〕 H. Hasse, Zahlentheorie. Berlin, Akademie-Verlag ( 1949) 〔 6 〕 R. Hooke, Linear p-adic groups and their Lie algebra. Ann. of Math. 43 ( 1942) 64 1- 655 〔 7 〕 T. 0n0. 0n some arithmetic properties of linear algebraic groups. Ann. of M ath. 70 ( 1959) 26 6 - 290 。 ¥ 5
© Copyright 2024