the f rst explain ), let us fi (1 n o ti a u n of eq a for the e derivatio See Fig. 4 th . R r o s F iu . d ts ra en n the n of tical argum rical regio ection. Whe the theore g the y dir in a cylind n d lo te a a Details of lu rm a o line ev clination ne unif isclination r to the dis clination li d is la e d u th ic ht f d o ig en y ra energ ane perp der a st in the . We consi ing on a pl interested ector n ly f the system ir o d e ry th et ow we are h m N it w z. geo n d o n ti a a corporated n of x disclin e can be in is a wedge is a functio m ? n u o ss re ti a a he e oo in w w cl s∂), dis which (sin∂, 0, co ation line, e that ∂ is plane), n = f a disclin z o y x– g n er (a en rther assum e e fu lin th e n W o s. n xi o ormati the z a , cos∂). The e twist def , sin∂ sin∂ of n along th s∂ n f o o co ti ∂ ct ta in fe ro (s ef the n = describing be given by variable ∂ r field can to ec ir d by a single e of , th assumption nd z. Then t of x, y a simplifying e th er d n independen u , sity f Frank -energy den Frank free = K, is K11 = K33 (3) /∂z)^2}}, 1/2 that ∂y)^2}+{(∂ / ∂ {( K{ 2) / f strength o (1 e = n li n o f Frank clinati lving a dis tegration lution invo so r ia il being an in m h it fa w A x) ). / ∂ (z arctan ngth is then 2/K)sin^2 per unit le ∂=∂0+(1/2) cos^2∂+(K2 e is √( n li X/ = n o X’ ti h a wit y ∫drf Frank disclin astic energ ergy of a e Frank el he free en th T 1. es ^iz 2) im z^ min =(K/8)(x^2+ nd thus f Frank a t, n a st n co as expressed 産総研 ナノシステム研究部門 Nanosystem Research Institute October, 2014 +sin^2x} K)sin^2∂)}^2 2/ K2 +( 2∂ s^ (4) osX/√co dr∫dx{2/(c ), {∫ ∂ 8 ^2 K/ n si c+ E K) = k22/ √(cos^2∂+( Edisclination 4)ln(R/rc)} r with a = Ec+{(πK/ nX, togethe nd z = r si a sX co r x = of variables sformation n a tr f n is a d ce in terms o rder of K ve introdu c, of the o onal order E ti n ta o en ti where we ha u ri o ib ntr of the rc. The co description c cut-off which the in microscopi rc < r gion on is not from the re e disclinati es th m n co he , W 1) . (ref. h ac0.1 xis is Ω c = ack wit nd the y a lid. and thus E va , 1) er . g n ef (r lo clination a is 0 d no )1 e rc th / n (R betwee ection is rest, ln )groove dir of our inte d the angle 4 n a se )( ) 4 ca n )( o e (3 ti th In t ng the ve direc length alo axis, is ∂ a axis (groo and the x e per unit n long the y n a li n n d o ee te ti tw a en be ri o isclin ngle gy of the d of n, the a e free ener thal angle th u m ), zi 1f a . e ig th (F n reover, whe /cosΩ. Mo Edisclination ∂. Thus, , ∂ = Ω + (5) the bottom cosΩ, n^2(Ω+∂))}/ si K) / 22 (K Ω+∂)+ the ac+√(cos^2( e form of /cosΩ = K{ n o ti here that th a te o n Edisclin e W lia et on (1). use Buscag tal, equati This is beca term of Eto t ). rs (4 fi n e o th ti on, , equa yielding our notati t from ours 4)ln(R/rc), ination; in is differen cl is 29 d with K=(πK/ f. a re d n arou the esented in ofile of n e profile to n energy pr n for the pr applied th io d pt n disclinatio a m , u 3 ss a K3 K22 = plifying when K11 = an oversim valid only , al.29 made x) / (z n /2)arcta yed ∂ = (1 they emplo ing K22≠K33. ion contain ses of K11≠ drical reg n ca li l a cy er e th en g low of istortion be in an area the twist d is present to e e er u th d n y g io ener distort the elastic in contact t the twist luation of ove bottom mption tha u ro g ss a e e th d In the eva f u o cr gy width we make a e free ener at l is the ation line, ne, and th ∂b. Then th a s a pl z to x– the disclin ed e th it referr parallel to are, per un bottom is ss section the groove ove bottom t ro a g n e f A at a cro th o t a oring uthal angle rface anch . The azim that with su d n with the NLC a n io ist distort with the tw associated irection, o poly porti s. [ ) an tenti ul fo erest exibl semic evice trans cting renes its po OLEDs ly fl se int ganic nic d holeondu e of des ( nical ly sty inten o c s t o a r o i u n t h d d a :p d c a c e e ) c t t e e i in tr e g l d trac nd be impor ophen sive e e in m mittin s and st stu ve at is an PV), a evice e mo ght-e xy thi expen ial us O i t h t d o ( n l i t d i i n e t o po sec n their d id n x a o , ght sulf htwei e c d n e a enh ylen 4-eth m i s t i p ) ono :PSS EDOT y ause c nderl e u b stem s o c ic the organ s aics t tudie l s o v oto a c t i r r o t imp elec ermo r e a h t ing fur ] Add u SS co l P y h met d e y l l stab ical amat ナノシステム研究部門はナノテクノロジーと計算科学を両翼とし、幅広い分野をカバーする専門 m e l b pro lished o the 家 100 名超を擁する基幹ユニットです。2010 年の発足以来、理論、計算・シミュレーション、 , S ransp S t :P DOT w s o e h i r car ood derst および計測技術との連携のもと、ナノ粒子技術やプロセス革新による新規機能性材料およびデバ :P y g EDOT o P l o rph v l o s イス・システムの開発などを進めています。また、ソフトマテリアルをベースとする「やわらか y coticall r u t c g stru plorin いロボット」や、未利用熱の利用技術の開発も始めています。今後は、やわらかくかつ人や環境 e h t fi f i s o sign exces e ake a にやさしいデバイス・システムの研究開発を推し進め、従来の軽薄短小に代わる「軽薄安柔」と m eport r o t der a s r e t t c ea spe PSS cr いう概念に基づいたナノシステムを開拓してゆきます。 s hange c r rrie d o n n a a Tak hous morp e The Nanosystem Research Institute (NRI) is a key research unit, having nanotechnology and bserv o e stin fi d f o soli computational science as its both wings, and boasting its over one hundred specialists covering broad dition the orpho n i m e ang s i areas. Since its inauguration in 2010, NRI has been developing new functional materials, devices, and T:P y t ivi PEDO nduct o . h l p a et mor systems by the development of nano-particle technologies and the innovation of processes, in close yang h g u an thro e Ram o t ] cooperation with theory, computational simulation, and measurement technologies. We have also d 5 e 1 ut 11– attrib t ] 5 iffrac [ d . started developing soft robot based on soft materials and new technologies to utilize unharnessed DOT r u o t t c stru tion ffrac i ls in heat. We are seeking to develop and realize devices and systems that are soft and gentle to humans a t eterm s d y r noc , r e a t v e n How orie and the environment, and to pioneer nanosystems based on the new concept of Light, Thin, Safe ded. e e oreov v i M t c ndu t y and Soft as our guiding principle, in place of the previous Light, Thin, Short and Small. l n d e fer har d dif h nt e f the m o p o vel r e [ v . n hes is i proac or heref t y a X-r m n l e l l fi SS cha DOT:P c e l e for the ethod t a c i r fab lar olecu le. h a s c a s ter Yam nome e v R–UV a I h lms e s u r a c carrie y be obabl e g s. a l t e l l vo mod e Hal ; d y t d i s a den the rrier is e t s c a e e f incr l ef e Hal s n :P e e T r O S sc PED OT:PS g for e razin l g b a suit X . s A r W o ist (GI trans c s d y n X-ra tz a raher i t r e e h t p ne pro termi t s i s tran ical eoret os s why n pectr o s s a e re ta i y c l t a an cap nifi c f o e g y r t ivi cha nduct ng i s dded u a s udie ic electr tion ffrac G E e ngl the all-a t s nspor a ecrea r t d r rrie u o i prev n-gel R I he EG N t – s –vi t o effec c ecifi of y th t i s w sho den gher h t il n n i e G e a s o h w E t h g t A y t of 1 a,b stent ly. De and t hod. tand asurin ctivit moun igure consi − 1 , e met nders ective ondu F by me b p c u e . s m r o a t l d r e e c o u m r e a p w T r S z c mi EG, Info four830 ectri ried o vent. tions s opti rting e car a sol the el serva ional ith 3% − 1 to r t o b w t f e y p n o l a o p w e m d h n u e v c t s e n S o s sted denc 1.2 S a con tudie . The EG a G is n the ng 01 Nanosystem sugge from Research 2014 depen use E re S1)Institute October, SAXS s thout e S2 i a I u i 1 r e d r c g w u h − i e G e t s g o b F s i t a Å d t F n y, lm n, 5 d ha cre SS fi AXD a = 1.8 wn in holog signe matio pect t , σ in morp r as as DOT:P nd q Infor , GIW re sho to ex ナノシステム研究部門の概要 Introduction ナノシステム研究部門長 山口 智彦 Dr. Tomohiko YAMAGUCHI Director, Nanosystem Research Institute 2014.04.15 t ti d not yco duct r mo dies OT:PS t elec oping ne gl l con and , it is carrie f PED us stu paren and d ethyle cally ctrica T:PSS, mero t the ion o e y s s c u l t fi trans r i a e i e D n l e f c i E p f h e h b e s P O c a h g i p o t u S f u d s s m o o e u ] , s h devi v h r t t u y t 6 l t ven ctric and impro carrie [ 5 , aqueo uctivi 4 ] A d sol moele f the ns to lear. ology cond .[3 , r to an o o c h y e i t p t ) h s t i e r i OT s t t v O o h o d D i S n t r n M lm m reme ving in PE s con nduct as fo till ide (D roces used such cal o impro measu the fi are s i p r t er, c e e el How v ce its olo e h h p t g mor mizin sms i e n s ・動的不安定性 Dynamic instabilities a u h ec beca ying nge a tu ・複雑系 Complex systems s h c y l nts Ear solve Director Tomohiko YAMAGUCHI ・自己組織化 Self-organization e l o b h a i p l r re amo s and m s a only ant in ns, h o g i ・物性理論 Condensed matter physics theory u t o a lic alth r app ・化学物理 Chemical physics ved n is o i mpro r i e t Deputy Director Yoshihiro ASAI ・非平衡伝導理論 Non-equilibrium transport theory un . es i n g o i rs chan dispe ・ラングミュア・ブロジェット膜 Langmuir-Blodgett films ven l o r ・分子集合体 Organized molecules co-s ms fo ma Kei-ichi IKEGAMI , r s ・物性評価 Characterization o e di conf ortstu rge. tr a o h r c h ess sync s exc re T a ・単層カーボンナノチューブ Single-walled carbon nanotube O s D m E l of P :PSS fi ・プリンタブルエレクトロニクス Printable electronics n s e e v s l u o ca co-s vents Prime Senior Researcher Hiromichi KATAURA・固体分光学 Solid state spectroscopy f o , s r e e i ord stud ural y r e v y still cantl ・分子機能材料 Molecular functional material ha t the a odels h m t ・色素増感太陽電池 Dye-sensitized solar cell ed t n g e n i m Principal Research Manager Yuji KAWANISHI i ・重水素標識金属錯体 Deuterium labeled metal complexes add xper a by in a e h r c a ・量子化学 Quantum chemistry the there es in d ・水素結合 Hydrogen bonding ring l. use a catte t s e o Umpei NAGASHIMA・同位体効果 Isotope effect tion a a p m s r fo this i e the ・化学工学 Chemical engineering in r l e l t a f s a cryst fi lm ・化学熱力学 Chemical thermodaynamics g n i r Takeshi FURUYA l ca orde ologi re y i lms a obilit fi m S ・有機薄膜 Organic thin films :PS d, e r l ca explo ologi Wataru MIZUTANI ・高分子 EL Polymer light-emitting diodes in t n y e t i er dens h diff y, l al g n n o i i s ri oport ・知財 Intellectual property ] Surp i l i b d o an the m ・技術移転 Technology transfer ction e h g d u r o e NRI Innovation Office lth ・産学官連携 Industry-Academia-Government collaboration carri ure, a lm ak the fi g hich m n i w min on i t d n ・ナノテク情報の収集、分析、広報 n , a conve ation Collection, analysis, and publicity of nanotechnology information te rier a r r a t c s he emon ・ナノテク情報誌「PEN」の出版 ver, t e s Office of R&D Strategy u e Publication of nanotechnology information magazine "PEN" can b been r r e e i r h t r a tting high c ・CG アニメーション Computer graphics animation per, y l his pa t e rs g n i ・グラフィックデザイン Graphic design r e g u n s ea ethyle ore m NRI Art Office igh ・サイエンスアート Science art h al e c h i . T electr nging , rp d l o e m fi basis ctric le g n a wide ating n i . l g a n t grazi hita e y T p . o ) S c s X o (GISA pectr fi y y b b y d t i studie mobil 非平衡材料シミュレーショングループ n situ ] In 6 1 Nonequilibrium Materials Simulation Group [ with i ナノ理論グループ s. f el sho o ナノ炭素材料シミュレーショングループ ion g dition Nanoscale Theory Group intro Nano Carbon Materials Simulation Group could se the e h 相関材料シミュレーショングループ t ansist on ナノ炭素材料研究グループ the tr :PSS, s e c n Correlated Materials Simulation Group e T:PSS Carbon Nanomaterials Research Group id PEDO g-inc t i v i t c u nd ナノ光電子応用研究グループ cond ナノシステム計測グループ XD) a f Nano Optoelectronics Research Group ng i ased r e e r t c t in Nanosystem Characterization Group sca c n o c e r ナノ構造アクティブデバイスグループ er highe ties w ed 3 n i [ b Nanostructured Active Devices Group . m s o result tors c since sed b , u y a p c o is osc n h c i h ion o w addit tance f n o ソフトマターモデリンググループ i s s r rn patte carrie 電気化学界面シミュレーショングループ Soft Matter Modeling Group the q g e h n t o l a to Electrochemical Interface Simulation Group スマートマテリアルグループ s ction Smart Materials Group diffra cal 0 c ion t a フィジカルナノプロセスグループ r a f r t f i ソフトデバイスグループ cen The d G on at Physical Nano-Process Group Soft Devices Group ction ightly a l r s f f d i d se s d e ソフトメカニクスグループ t r o hain ep ナノケミカルプロセスグループ interc usly r Soft Mechanics Group y ion r t c a r t e h cen Nano Chemical Process Group that t スマートセンシンググループ G on y sed b a e G r E Smart Sensing Group c in of グリーンテクノロジー研究グループ XD f l A a W t I a G 形態機能ナノシステムグループ width he 2D n ns Green Technology Research Group Morphofunctional Nanosystem Group y Riv e sca b n i l d e t d le ned repor esting s ll n ne. – π i g fi a s r u o l e g l f a a l w π u d a e a , s e ( l e t s l h s . C ered l siz stals gnal, ction e cry e wel rom t ation ly ord crysta T cry s wer ger si ion f nd th refl e weak PEDO fi lm at PE stron culat 020) erage s PSS, a h l ( e i v t h a h a t a d e t c g o m s e d e f t b e n n e e t u at mplyi itativ ted th tion o e inte is sys istrib i roduc t a r c h p d , n t c e o s i a i y at th e m d u l G x s fl n m xy a wed Institute October, nd th ith E the q Nanosystem Research 2014 02 becau eak i 20) re rando the q ing, a lms w G sho per p hough he (0 k iable E h r t t f l c fi t l a i e h a a h t r S m w p i s S s , o t o ne o fr ed he s w on T:P ion rose d pla mpar fi lm ed. T PEDO y be n solut face- 組 織 ORGANIZATION 研究部門長 山 口 智 彦 副研究部門長 浅 井 美 博 池上 敬一 首席研究員 片浦 弘道 総括研究主幹 川西 祐司 ( 兼 ) 長嶋 雲兵 古 屋 武 水谷 亘 NRIイノベーションオフィス ナノテクノロジー戦略オフィス NRIア ー ト オ フ ィ ス IT システム IT System ソフトシステム Soft System テクノロジーブリッジ Technology Bridge グリーンシステム Green System o poly porti s. [ ) an tenti ul fo erest exibl semic evice trans cting renes its po OLEDs ly fl se int ganic nic d holeondu e of des ( nical ly sty inten o c s t o a r o i u n t h d d a :p d c a c e e ) c t t e e i in tr e g l d trac nd be impor ophen sive e e in m mittin s and st stu ve at is an PV), a evice e mo ght-e xy thi expen ial us O i t h t d o ( n l i t d i i n e t o po sec n their d id n x a o , ght sulf htwei e c d n e a enh ylen 4-eth m i s t i p ) ono :PSS EDOT y ause当部門は、多才な研究者群の協働によるナノ材料の研究開発とその集積化技術をコア・コンピタンス c nderl e u b stem s o c ic the organ s aics とし、グリーン・IT・ソフトシステムのアウトカムでオープンイノベーションに貢献します。研究開 t tudie l s o v oto a c t i r r o t imp elec 発の前線で技術の橋渡しをする「テクノロジーブリッジ」という概念を確立し、技術移転を加速して ermo r e a h t ing fur ] Add u 未来社会に貢献します。国際連携を強力に推進するとともに、ユニット独自に NRI イノベーションオ SS co l P y h met d e y l l tab ical amat フィス、ナノテクテクノロジー戦略オフィスおよび NRI アートオフィスを設置して、研究活動を機動 s blem pro lished o the 的に展開します。図:月刊情報誌 PEN (http://pengin.ne.jp) , S ransp S t :P DOT w s o e h i r car ood derst :P Public Engagement with Nanoy g EDOT based Emerging Technologies o P l o N E W S L E T T E R rph v l o s y coThe Nanosystem Research Institute (NRI) contributes to Open Innovation ticall r u t c g stru plorin e h t fi f through achieving outcomes of our research in Green, IT and Soft i s o sign exces e ake a m eport r o t Systems by taking advantage of our core competence: the wide-range der a s r e t t c ea spe PSS cr s R&D for nanomaterials and their integration by multiphase collaboration hange c r rrie d o n n a a Tak hous morp among skillful researchers with cosmopolitan viewpoints. NRI establishes e bserv o e stin fi d f o soli the concept of Technology Bridge that accelerates smooth transfers of dition October 2014 the orpho n i m Volume 5, Number 7 e ang s i new technologies to the society. To promote our agile research, NRI has T:P y t ivi PEDO nduct o . h l p a et mor its own unique in-house organizations: the NRI Innovation Office, the Office of R&D Strategy yang h g u an thro e Ram o t ] d 5 e 1 and the NRI Art Office. ut 11– attrib t ] 5 iffrac [ d . Figure: Monthly report: PEN (Public Engagement with Nanobased Emerging Technologies News Letter: DOT r u o t t c stru tion ffrac i ls in http://pengin.ne.jp). a t eterm s d y r noc , r e a t v e n How orie ded. e e oreov v i M t c ndu t y l n d e fer har d dif h nt e f the m o p o vel r e [ v . n hes is i proac or heref t y a X-r m n l e l l fi SS cha DOT:P c e l e for the ethod t a c i r fab lar olecu le. h a s c a s ter Yam nome e v R–UV a I h lms e s u r a c carrie y be obabl e g s. a l t e l l vo mod e Hal ; d y t d i s a den the rrier is e t s c a e e f incr l ef e Hal s n :P e e T r O S sc PED OT:PS g for e razin l g b a suit X . s A r W o ist (GI trans c s d y n X-ra tz a raher i t r e e h t p ne pro termi t s i s tran ical eoret os s why n pectr o s s ナノ粒子 a e re ta Administration i y c l t a an cap ソフトマテリアル ナノ複合体 CNT nifi c f o e g y r t ivi cha Nanoparticles マイクロ流路 ナノギャップ nduct ng i s Nano Compsite dded u a CNT Soft Materials s udie Universities ic Nano Gap Device Micro Channel electr tion ffrac G E e ngl the all-a t s nspor a ecrea r t d r rrie Industries u o i prev n-gel Research Units in AIST R I he EG N t – s –vi t o effec c ecifi of y th t i s w sho den gher h t il n n i e G e a s o h w E t h g t A y t of 1 a,b stent ly. De and t hod. tand asurin ctivit moun igure consi − 1 , e met nders ective ondu F by me b p c u e . s m r o a t l d r e e c o u m r e a p w T r S z c mi EG, Info four830 ectri ried o vent. tions s opti rting e car a sol the el serva ional ith 3% − 1 to r t o b w t f e y p n o l a o p w e m d h n u e v c t s e n S o s sted denc 1.2 S a con tudie . The EG a G is n the ng 03 Nanosystem sugge from Research 2014 depen use E re S1)Institute October, SAXS s thout e S2 i a I u i 1 r e d r c g w u h − i e G e t s g o b F s i t a Å d t F n y, lm n, 5 d ha cre SS fi AXD a = 1.8 wn in holog signe matio pect t , σ in morp r as as DOT:P nd q Infor , GIW re sho to ex ナノシステム研究部門の研究戦略 RESEARCH STRATEGY of NRI PEN ISSN 2185 - 3231 PEN October 2014 社 会 1 グリーンシステム Green System SOCIETY (燃料電池、太陽電池) (Fuel Cell, Photovoltaic Cell) ソフトシステム Soft System (再生医療・予防診断) (Tissue Engineering, Preventive Diagnosis) オープンイノベーション OPEN INNOVATION ITシステム IT System (ナノ構造エレクトロニクス) (Nanostructured Electronics) テクノロジーブリッジ Technology Bridge (理論・シミュレーション、計測、ナノ安全) 行政 (Theory/Simulation, Characterization, Nano Safety) 産総研 AIST 大学 企業 ナノシステム 研究部門 (NRI) 他ユニット t ti d not yco duct r mo dies OT:PS t elec oping ne gl l con and , it is carrie f PED us stu paren and d ethyle cally ctrica T:PSS, mero t the ion o e y s s c u l t fi trans r i a e i e D n l e f c i E p f h e h b e s P O c a h g i p o t u S f u d s s m o o e u ] , s h devic v h r t t u y t 6 l t ven ctric and impro carrie [ 5 , aqueo uctivi 4 ] A d sol moele f the ns to lear. ology cond .[3 , r to an o o c h y e i t p t ) h s t i e r i OT s t t v O o h o d D i S n t r n M lm m reme ving in PE s con nduct as fo till de (D roces used such cal o impro measu the fi are s i p r t er, c e e el How v ce its olo e h h p t g mor mizin sms i e i n s a u h ec beca ying nge a tu s h c y l nts Ear solve e u l b h a i p l r e 固液界面の構造を理解するには、自由エネルギーの高精度計算が不可欠で、膨大amo o and r m s a only な構造サンプリングが必要です。当研究グループの森下主任研究員は、エネルギー ant in s, gh ation c i lthou l p a p a 関数を対数形式で表すことでサンプリング効率を上げる計算手法を考案しまし ed s v i o ion impr unter s i . e た。この手法は、超並列計算にも適しており、大規模計算への適応も期待されま n g o i rs chan dispe n v l o r す。図はこの手法で得たグリシンペプチドの自由エネルギーを表しています。 co-s e ms fo a m , r s o e f di To understand the microscopic structure of the liquid/solid interface, high precision con otr ortstu rge. chr s cha s n e y c s x e free-energy calculations are needed, demanding extensive conformation-sampling. re DOT lms a of PE PSS fi Dr. Morishita, a member of our group, developed an efficient way of sampling by s e ven s l u o ca co-s vents using the logarithmic form of the free-energy. This method suits massively parallel of , s r e e i rd stud ral o y computing and thus can be applied to large-scale practical problems. The figure r e v y still cantl ha e s denotes the free-energy diagram of a glycine peptide obtained by this method. l h t e at mod ed th t n g e n i m i add xper a by in a e h r c a he there s in t d ring l. use a catte t s e o 当グループでは、プラズマやレーザー、表面活性などを利用した物理的手法に tion a a p m s r fo this i e the ini r l e l t a f s a よって、必要な材料を必要なだけ作る(オンデマンド)新規微粒子合成プロセ cryst fi lm o g n i r l ca orde ologi re n i a 図 : Cu-Au 合金ナノ粒子の気相中熱酸化によって、 Au-Cu( 金属 ) y s スを開発しています。 t i m l l mobi PSS fi , d e r l ca explo と Cu2O( 半導体 ) がヘテロ接合した均一ナノ粒子 ologi in erent f f ensity i d d h y, l al g n n o i We are developing original physical processes using plasmas, lasers and surface i s ri oport ] Surp i l i b d o an activities to produce novel fine particle materials. These processes enable the the m ction e h g d u r o e th rri re, al production of just the necessary quantity of necessary materials 'On Demand'. ca h mak lm the fi ic g h n i w in n Figure: Homogeneous nano-heterojunctions between Au-Cu(metal) and Cu2O nd a ventio , n n o c o ati te rier a r r a t c s he (semiconductor) formed by thermal oxidation of Cu-Au nano-particles in gas phase. emon ver, t e use n e can b be r e i r the r r a tting high c per, a this p rsely g n i r e gl u n s ea ナノ材料、ナノ粒子を、幅広い産業分野に応用していくため、オンデマンド・連 ethyle ore m igh h al e c h i . T electr nging 続製造プロセスの開発を行っています。圧力による相や物性の制御、マイクロ流 , rp d l o e m fi basis ctric 路などのコア技術を駆使して、必要なときに、必要な性質を持つ、必要な量のナde angle wi ting al. ng-in ノ材料・ナノ粒子を作るプロセスの構築、およびそれらを用いた機能性部材、デ t e a grazi hit y p o c s XS). T o バイスへの応用に取り組んでいます。 図:柔軟な耐熱ナノコンポジット断熱材 (GISA pectr fi y b y d by t i studie mobil We have developed chemical processes for synthesis of a variety of n situ I n 6 ] with i s. [ 1 nanomaterials and nanoparticles using high pressure fluids, micro-fluidic f l e sho o ion g dition technology and chemical engineering techniques. Our researches include intro could se the e h on-demand synthesis, continuous mass production and device development t ansist n the tr PSS, o s e c n e of functional materials. T:PSS id PEDO g-inc t i v i t c Figure: Flexible and heat-resistant nanocomposite thermal insulator. u nd cond XD) a f ng i ased r e e r t c t in ca c n o c e r er highe ties w ed 3 n i [ b . m s o result tors c y ナノ構造をベースに、人が扱うスケールまでを一貫して設計・構築する「ナノシステム」 since sed b , u y a p c o is osc n o h c i n h o i w による、環境・エネルギー問題解決への貢献を目指しています。放射性セシウム除染 addit tance f rs in rns o e i e r t t r a a では、選択的にセシウムを吸着するナノ粒子を開発し、実証プラントによる汚染灰除 p c q e h t along to the 染試験を進めています。また、電気的に色変化するナノ粒子インクの開発に基づき、 s n o i t c diffra cal 0 t c ion t a 環境 ・ 省エネへの貢献を目的として、 電子ペーパーや調光ガラスの開発も進めています。 r a f r t f i oncen The d at y n l o t i h t c lig We are developing the Nanosystem based on the design and construction of diffra sed s ain s orted h p c e r r e t y structures extending from nanoto human-scale, to solve various environment/energy in usl ys ion t a r t e h cr oncen problems. In the issue of the radioactive-cesium decontamination, we have developed that t y b d e as incre of EG nanoparticles for cesium-uptake, and constructed a test-plant. The R&D of XD f l A a W t I a G width he 2D electronic-paper and color-switchable windows is also promoted by the development n 色可変素子 ans y Riv e scセシウム吸着材 b n i l d e t d d inks of color-switchable le Cs-adsorbent Color-switchable device neof nanoparticles using repor esting s printing/coating ll technologies. n ne. – π i g fi a s r u o l e g l f a a l w π u d a e a , s e ( l e t s l h s . C ered l siz stals gnal, ction e cry e wel rom t ation ly ord crysta T cry s wer ger si ion f nd th refl e weak PEDO fi lm at PE stron culat 020) erage s PSS, a h l ( e i v t h a h a t a d e t c g o m s e d e f t b e n n e e t u at mplyi itativ ted th tion o e inte is sys istrib i roduc t a r c h p d , n t c e o s i a i y at th e m d u l G x s fl n m xy a wed Institute October, nd th ith E the q Nanosystem Research 2014 04 becau eak i 20) re rando the q ing, a lms w G sho per p hough he (0 k iable E h r t t f l c fi t l a i e h a a h t r S m w p i s S s , o t o ne o fr ed he s w on T:P ion rose d pla mpar fi lm ed. T PEDO y be n solut face- グリーンシステム GREEN SYSTEM 電気化学界面シミュレーショングループ グループ長 : 中西 毅 / Electrochemical Interface Simulation Group Leader : Dr. Takeshi NAKANISHI フィジカルナノプロセスグループ グループ長 : 川口建二 / Physical Nano-Process Group Leader : Dr. Kenji KAWAGUCHI ナノケミカルプロセスグループ グループ長 : 依田 智 / Nano Chemical Process Group Leader : Dr. Satoshi YODA グリーンテクノロジー研究グループ グループ長 : 川本 徹 / Green Technology Research Group Leader : Dr. Tohru KAWAMOTO c s e y er rgani uctor er ] Pol ecaus g lay ate) tia and o icond l fon rest b polym xible, portin s. [ 1 ) m u e e s s e t s e g n c D s e poten n i n fl i a E i n v r s c t L e i e t c se of it es (O ically nic d holey styr ondu e Organ d n l inten o c s t o ra a r o i u t n t h d d a :p d c a c e e ) n c t t e d be studi in me itting and i phene impor ive el attrac most V), an l use vices ht-em y thio xpens have is an P a so e e g x e i O i t h t d o ( n l i t d i i n n e seco ir pot of the e d d i n x a o sulf eight, lightw e c d n e enha thylen 3,4-e miz is ) S S nopti o :P T (PEDO yin e l s r u e und beca system ol s o c ganic 当グループでは温度差や電位差が与えられた物質の状態を高精度に記述する手法 the s a in or Thermoelectric Voltage e s i c i stud volta を開発しつつ、この手法をエネルギー産業やエレクトロニクス産業で使われる材 photo tan tric c e mpor l i e o therm r a e 料のモデリングに適用します。例えば、排熱の再生利用を目指すデバイスや低消 a h furt dding Film Material 2 ] A unt o c 費電力で高速の次世代メモリなどに使用される材料を対象とします。 PSS hyl dimet dis e y l b ll atica 図:二端子熱電素子における熱起電力やフォノン熱伝導度の第一原理シミュレーション sta lems dram prob ed ublish We develop accurate methods to describe the state of matters exposed to ort the Hot Cold , S ransp S t :P T PEDO ex w s o differences in temperature and/or electric potential. We also apply the methods e h i carr stood under S :P T O to materials used in the energy and electronics industries such as devices for PED ology n Morph e v l o utilization of waste heat and next-generation high speed memories with low co-s ally critic a r u t c power consumption. Figure :First-principles simulation of thermoelectric effects and stru ring explo ca Thermal Current f the o s phonon thermal conductance of two-terminal devices. s signifi e c An ex a d e e t k r repo to ma order a b tes a e pectr r s c S of PS s i e g chan r e carrie d o n n a a 当グループでは、炭素系ナノ物質 (CNT、グラフェン、生体分子など ) の特性をシ Tak phous amor t e v r ミュレーションによって研究します。例えば、新しい実験技術である He イオン obse ne l pristi f lid fi o n o i 顕微鏡 (HIM) でグラフェンの構造評価をすると、図のようなグラフェン格子像が so holo addit e p h mor e in t chang 得られるものと予測されます。また、フェムト秒レーザーを用いたグラフェン加 EDOT:PS ty is i v i P t c u cond holo l. 工技術のシミュレーションによる研究開発で企業との連携が始まっています。 morp g et a n a y u O gh d u thro aman Our group explores the frontier of carbon nano-materials such as CNT, the R o t ] S d 5 e t 11–1 グラフェンの格子構造 ( 左 ) と ttribu graphene, bio-molecules by simulation. We predict that He ion microscopy be a tio c a ] r diff HIM 像のシミュレーション ( 右 ) T. [ 5 (HIM), a newly developed experimental tool, can monitor the graphene lattice PEDO e, r u o t t c stru ction graphene (left) and as displayed in the figure. We also collaborate with companies by joining a diffra n i n i m s r l dete crysta simulated HIM image (right) nano , technology research association for the development of graphene fabrication tio wever o rienta H o . d adde r e technology using a femtosecond laser. v o More uctive cond e b t y l n hard iffere g and d i h e t h n of t opme devel e s r e [ v . is in aches 当グループでは、優れた特性をもつカーボンナノチューブ (CNT) を用いた電子デ appro ore heref t y a r 2D Xm ngi l バイスの実現を目指し、CNT の分散技術、分離技術、デバイス開発の研究を行っ e l fi chal T:PSS PEDO ctr e l e ています。ゲルを用いたカラムで金属型と半導体型の CNT を分離し、さらに、 the d for metho tin a c i ular 温度をコントロールすることで非常に簡便に単一構造の半導体型 CNT が得られ fabr hit molec le. a s c a s Yam meter るようになりました ( 図 )。今後、新規 CNT デバイスの実用化を目指します。 nano pe e v R–UV a I h s fi lm e m s u r a e i c Toward the practical use of carbon nanotube (CNT) having superior properties, carr bly be proba . [ ltage単一構造半導体型 CNT 溶液と o we are developing dispersion and structure sorting technologies and electronic odels v l m l a The H it ; その分子模型 d y t d i s a devices. We have separated metallic and semiconducting CNTs and even the r den sSolutions of single-chirality carrie i e t s c a e e incr isolated single-chirality (structure) semiconducting CNTs using ll eff s the Ha :PS creen semiconducting CNTs and their s EDOT S P S temperature-controlled gel chromatography (Figure). Hereafter we will try to :P EDOT molecular models g-i r n o i f graz table realize novel CNT devices. unsui XD) . s A r o (GIW ansist lm tr ca s d y n X-ra ertz a terah ies t r e e h t prop mine deter or t s i s 当グループでは、ナノ領域に閉じ込められた光や電子の新規な特性を発現させる tran etical theor c y s h o r w t Plane LED Ridge LED ec asons ため、ナノ構造を最適に設計・製造する技術を開発し、例えば高効率 LED のよう sp citan the re y l capa cant signifi な高機能光デバイスや真っ暗闇でカラー撮影が可能な暗視カメラを開発していま harge ca ty of i v i c t c u cond g す。また、その評価のため高機能電子顕微鏡や近接場光プローブ顕微鏡などを基 added to s usin e i d u t s ical electr 盤として、さらに局所プラズマを利用した新規評価技術も開発しています。 ction diffra o G e the E -angl リッジ We design and fabricate optimum nano-structures to apply novel characteristics t d small r e s o a p s e decr r tran 500nm of electrons and photons confined in these structures, and aim to develop carrie ly s u o i prev el 600nm higher performance opto and electronic devices, such as high efficiency LEDs ion-g o R I he EG N t – s UV–vi f and a novel color night-vision system. To accelerate the research, we also o SEM Image t c 通常の LED( 左 ) effe c f specifi o e develop high performance electron microscopy, probe microscopy and a new h y t t より明るく発光するリッジ構造 LED( 右 ) i s show r den highe Bright emissionifrom iled characterization method using ith local plasma. s on w EG hen g ridge-structured the ALED t y t n ,b f . t d n i a o r d d . Deta e v n u n i t t o 1 y a s t s a h n derst nduc ctivel igure consi − 1 , y mea amou e met n e o F b b p c u e . s m r o atio t l d r e e c o u m r e a p w T z EG, Infor four830 S ectric ried o ptimi vent. tions th 3% rting e car a sol the el serva ional i was o − 1 to r t o b w t b f e y p n o l a o p w e m d h n u e v c t s n o s the S sted dence 1.2 S a con tudie . The EG a G is S2 in sugge hout from Research 2014 depen use E re S1)Institute October, SAXS s using 05 Nanosystem t e a I u an i 1 r e d r c g w u h − i e G e t s g o b F s i a ed t in F .85 Å fi lm tion, D and logy, t that incre q = 1 assign IWAX T:PSS expec shown orpho forma 3%, σ s O d o G n m r a e o D n I , r t a w a E y a m P g e g 1 − 1 lo − 1 fi l abl rtin ing Å − tion orpho eason n the Suppo 1.85 1.28 Å direc 1.28 Å stand I T システム INFORMATION TECHNOLOGY SYSTEM 非平衡材料シミュレーショングループ グループ長 : 宮崎剛英 / Nonequilibrium Materials Simulation Group Leader : Dr. Takehide MIYAZAKI ナノ炭素材料シミュレーショングループ グループ長 : 宮本良之 / Nano Carbon Materials Simulation Group Leader : Dr. Yoshiyuki MIYAMOTO ナノ炭素材料研究グループ グループ長 : 田中丈士 / Carbon Nanomaterials Research Group Leader : Dr. Takeshi TANAKA ナノ光電子応用研究グループ グループ長 : 池上敬一 ( 兼 ) / Nano Optoelectronics Research Group Leader : Dr. Kei-ichi IKEGAMI(Acting) en re or f in ve be des. [ ell sity a ility. (EG) l use vity o S can ies ha not w entia g den ducti lectro r mob lycol d OT:PS e n n e s g i u D i i o t t p r E c s e t r n nd fo o i P n e a l a , erous trica the c :PSS, and d nspar ethyle cally on of c T m t i e y s s c u O l t fi r i a e i e D n l e f c i E n tra e p f h s P ough ] Spe , suc devic ve the hus a r mob us di y of lvent 5 , 6 ] Alth ctric and t impro ctivit carrie [ aqueo e u 4 l y o . e d e , t n g r h n o t a o a nd so s 3 l yn o ) to therm ts of ot cle orpho dition DOT s ivity.[ the c (DMSO s for ll n lm m remen ving in PE s con i nduct a s u t o o s e s r fi d h a c p e l c e e e s o a oxide u r u s im m th a pr er, a ctric Howev ts ele nce i holog the morp zing s ptimi se it anism becau g ech erlyin nge a studi h c y Earl vents cosol 1.6 iable 当グループでは、ナノ構造・界面に関する理論を構築し、解析技術を向上させ、amorphous d rel ies an a sma 1.7 only 高効率な光・電子デバイスを実現するための機能設計と特性解析を行っています。 t in n a t CT2 r h , o ugh t tions 1.5 altho 1.6 pplica 主な研究対象は有機薄膜太陽電池材料、有機半導体材料、高機能高分子材料、分 her a ved. is impro erion count 1.5 子光機能材料、半導体光触媒、炭素系ナノデバイス、自己集積化有機ナノ構造体 . es ind n g o ersi chan 1.4 e disp s lvent 1.4 です。 図:光誘起相転移を示す断熱ポテンシャルエネルギー面 co-so for i lems rmat s, tudie confo We are developing theories for nanoscale materials and interfaces to design e. sports rg a otron h r c 1.0 cess synch ies ex e opto-electrical and electronic devices with high efficiency. The subjects include DOT ms ar 0.8 of PE S fi l 0.6 OT:PS 0 s e vents s organic solar cells, functional polymers, photo-functional materials, nano-carbon l u 0.02 s座標 0.4 ts ca co-so 0.04 olven 0.2 s of t 0.06 er, devices and self-assembled organic nanostructures. studie l ord 0.08 0 d座標(Å) ctura ery li tly Figure: Adiabatic potential energy surface showing a photoinduced phase transition. still v Final state Initial state fi can ls hav he mode that t rted g ental addin xperim l tra by ain are a the ch there ges in s ring used t al. scatte ano e onNd 磁性材料・超伝導材料・強誘電/圧電材料などを構成する機能性物質では、しば i t B a a pow m s e for this i rve th しば電子相関がその特異物性発現の を握ることがあります。当グループでは、 stallinity ter cry ms af l fi d 第一原理電子状態計算のような計算科学的手法により、このような物質・材料をrdering on l a c i g o pholo e 対象として、必要な手法・プログラムの開発・整備を行ないながら、応用研究を ity in ms ar mobil S fi l OT:PS Fe r 進めていきます。現在は、高性能永久磁石材料研究に、特に注力しています。 explo ed, wh gical E pholo nt ty in 図:ネオジム磁石中の電子スピン密度の計算結果 iffere densi t ugh d , ngly ional For several functional materials such as magnetic, superconducting or rprisi oport 5 ] Su y lit ferroelectric/piezoelectric ones, electronic correlation plays an important role in the the mobi s n and actio en h g d u r o emergence of their specific properties. We investigate these materials by means of carrie , alth cture lm kes fi a m e ng th computational methods such as first-principles calculations, developing required which rmini a d ntion n, an conve computational techniques and programs. Currently, we focus on high-performance r ntatio d rrie strate the ca emon permanent magnets. Figure: Calculated electronic spin density in Nd2Fe14B. over, d e use n can b ly bee s e r r e e i r h t h car tting he hig w aper, ly this p verse y g n i r u ne gl meas 当グループは、テクノロジーブリッジとしての役割を果たすため、ナノ領域の構 ethyle h efore he hig ical ng. T electr 造・物性・機能を明らかにする各種計測法の高度化とともに、システム化段階に lengi ho , d l e morp ic fi basis electr 対応した応用を進めています。例として、高強度パルス光の極短時間照射により、e angle X g wid catin cid al. ng-in プラスチック基材にダメージを与えずに無電解めっきの密着性を向上させる研究 t e a grazi ashit h opy XS). T ctrosc に取り組んでいます。 図:PET フィルム上に作製した金めっき微細パターン GISA ( V pe us by fi d by bility studie er mo We are developing not only advanced techniques to measure nano-scale n n situ 16 ] I with i els. [ w structures and properties but also applications to deal with the systematization f el sho ion o ion g addit rod t stage, in order to play a role as the Technology-Bridge. For example, we have n i the could r ease developed etchingless, electroless plating processes that can produce metal nsisto the n o , S he tra S t :P T O so ce thin films with strong adhesion to various polymer films. T:PSS ciden PEDO ing-in y, t i v i t Figure: High-resolution patterning of gold electroless plating formed on a PET film. conduc ) and D X A W fro g ased tterin incre n y sca conce were igher h erties , bined s. [ 3 s com result sistor y c e c 当グループでは、錯体分子、導電性高分子、ナノワイヤー、ナノギャップなど特 n i sed b py, s is cau rosco n t ich ion o 異なナノ構造が発現するアクティブな性質を利用した熱電素子、不揮発性メモリ ce wh addit citan f th in rns o rriers などの新規デバイスの開発に取り組んでいます。写真は有機熱電素子 ( 左 ) とそ patte ge ca z he q the ong t l a ed to のモジュール ( 右 ) です。高い熱電変換性能を持つ導電性高分子 PEDOT:PSS を利 ctions a 0 diffra rical 用した熱電素子を組み上げることでモジュール化に成功しました。 ractio ration t n e c e diff n h o T G t E at ly a ction slight In our research group, we develop electronic devices such as thermoelectric (TE) diffra eased a ted ain st repor terch conversion devices and non-volatile memories, using metal-complex molecules, n i ously t s a ration e cry ncent conductive polymers, inorganic nanowires, and metal nanogaps. Furthermore,that th a 熱電素子 ( 左 ) とそのモジュール ( 右 ) EG o ed by EG creas n i we aim to create new types of active organic/inorganic hybrid devices by fusion Thermoelectric Conversion Device (left) m ct of XD lfGIWA h at a the 2D and of these materials. The picture shows our organic TE device and module. We widt y Rivna ns Module (right) a c s line d b d ting highly ailed neassembled e. PEDOT:PSS films.ed, as reporte s along s – πTE module gesusing sugby e full ( π the lear -defi e waordered tallin l h s , z C s t l i l y l r e s . r a on a e i c n w m t l n t s e n fro fl ec matio er sig ly ord d the crysta T cry s wer EDO weak 20) re ulatio trong PEDO rage SS, an fi lm s c 0 e s P l ( e i v that P h a h a t a d e t c g o m s e d e f t e n n e e h t i u o e v t c s y b t i y l u i t n n s r d p hat b i a d t o e t i s t ore is, im y dis at the uanti G pro se thi Research fl ect ndica doml xy ax wed m nd th the q Nanosystem Institute October, 2014 06 o a with E becau eak i q 20) re h h , p s 0 s g e e g ( l r u h m n o ran b h t e o i e l relia m th with pack ith EG sharp SS fi s of t , alth ared e-on e not se fro lms w plane DOT:P . The p lution b c E d a o d m fi e P y s f e o v a t e e c r e o d 1 aro th Th ye ) m uga T c xis mpr ] Th PEDO -conj displa q z a [ 17 ] (FWHM EG to was i [ 10 テクノロジーブリッジ TECHNOLOGY BRIDGE 光励起 励起エネルギー(eV) ナノ理論グループ グループ長 : 関 和彦 / Nanoscale Theory Group Leader : Dr. Kazuhiko SEKI 相関材料シミュレーショングループ グループ長 : 石橋章司 / Correlated Materials Simulation Group Leader : Dr. Shoji ISHIBASHI ナノシステム計測グループ グループ長 : 久保利隆 / Nanosystem Characterization Group Leader : Dr. Toshitaka KUBO ナノ構造アクティブデバイスグループ グループ長 : 石田敬雄 / Nanostructured Active Devices Group Leader: Dr. Takao ISHIDA o poly porti s. [ ) an tent ul fo erest exibl semic evice trans cting renes its po OLEDs ly fl se int ganic nic d holeondu e of des ( nical ly sty inten o c s t o a r o i u n t h d d a :p d c a c e e ) c t t e e i in t e g l d trac nd be impor ophen sive e e in m mittin s and st stu ve at is an PV), a evice e mo ght-e xy thi expen ial us O i t h t d o ( n l i t d i i n e t o po sec n their d i n x a o , sulf ight ghtwe c d n e a enh ylen 4-eth m S) is S nopti o :P T EDO y e l s r u e a und bec stem s o c ic 触媒反応から、表面構造、自己組織分子集合体、さらに粗視化に基づくマクロ連 the s organ aics t l studie o v oto 続体にわたる理論・モデリング技術をフルに活用し、新規な分子ナノシステムの c ta i r t impor elec ermo r e a h 開発を先導・具体化することを目指します。具体的な研究対象は、有機分子触媒、 t ing fur ] Add 3 nm o c 10 1 nm l SrTiO3 表面 STM 像、錯体超分子、イオン液体電解質、高機能ゴム・ゲル、液晶スカー PSS u methy d y l stable ical ミオン格子(図反時計 り)等です。 amat 102 nm m e l b pro ゲル相 液体相 lished Our goal is to lead the research and development of novel molecular nano-systemstranspo the , S S :P 10 nm DOT ow towards their materialization. Our theory and modeling techniques ranging from carries ood h derst 収縮 molecular to macroscopic continuum scales allow addressing diverse problems. PEDOT: logy orpho The figures illustrate our research subjects: organocatalysts, STM imaging of SrTiO3 co-solv ly itical u g surface, supramolecular complexes, ionic liquid electrolytes, high-function struct plorin 膨潤 e h t fi f i ess o rubbers/gels, and liquid crystalline Skyrmion lattices (in a counter-clockwise order). sign n exc te ake a m repor o t der a s r e t t c ea spe PSS cr e g n cha rrier o and 当グループでは、 産業技術に資する機能性材料として、 新規ソフトマテリアル(ス s akan u T o h Irradiated area morp Damages e v r e マートマテリアル)の研究開発を行っています。例えば、ゲルや液晶、あるいは obs istine f lid fi o n o i 高分子等を化学的手法を用いて高機能化・複合化することにより、新規な光相変 so pho ddit e h t in mor ange 化材料や自己修復材料を開発することに成功しました。さらに、これらの材料の PEDOT: ty is i v i t c ndu ho 環境分野および情報技術分野への応用に取り組んでいます。 et al. morp yang gh u an thro Our group aims at exploitation of functional soft-materials contributing to e Ram o t ] d 5 e 1 ut 11– attrib industrial technology. For instance, we successfully developed functional c a ] r [ 5 diff DOT. materials such as photo-responsive liquid crystals, phase change compounds, r n to o tructu i s t c ffra 光により損傷が修復するゲル and self-healing gels, by means of chemical synthesis and composite fabrication. n i m s r l e sta det nocry Light-induced self-healing of , We also work toward the practical use of these functional materials in the fields wever o rienta H o . a functional gel dded v of environmental and information technologies. ive Moreo nduct t y l n d e fer har d dif h nt e f the m o p o vel r e [ v . n hes is i proac 有機分子や生体由来材料が持つやわらかな構造特性と自己組織化や界面での物質 o heref t y レーザー照射部 a X-r m n l 輸送・固定化などの省エネ型液体プロセスを活用した「やわらかい」デバイスの e l l fi SS cha DOT:P c e Calcium phosphate l e 開発に取り組んでいます。具体的には、液晶性有機半導体材料、省エネ型コロイ the for ethod a c i r fab lar ド光学素子、高機能バイオメディカル素子の開発を進めています。 olecu . h scale r amas e t Y e nom 図:レーザー援用バイオミメティック法によるリン酸カルシウムのパターン形成 V U ave IR– lms h se We work on the development of soft-devices in which the structural properties of soft becau arrier c y l b oba e 非照射部 g a t l materials (e.g. organic and biological molecules) and the energy-efficient liquid processes models l vo e Hal ; d y t i s Substrate (e.g. self-organization and material transportation at the interface) are utilized. Specifically, the ad den rrier is t s c a e e f incr l ef we are developing liquid crystalline organic semiconductors, energy-saving optical e Hal s :P creen s EDOT S P S devices based on colloidal particles, and highly-functional biomedical devices. OT:P g r n o i f z le gra suitab Figure: Calcium phosphate pattern formation by a laser-assisted biomimetic process. X . s A r W o (GI nsist m tra s d y n X-ra tz a raher t the e roper n p i term t s i s 当グループでは、生体システム等自然界で実現されている柔らかくしなやかな動 tran ical eoret y h o r w t c sons き・構造形成やそれらのシステムデザインを意識した新機能・材料研究を展開し spe it e rea tly pac n a a c c gnifi ています。特に、ゲル、高分子、コロイド、弾性不安定性、表面・界面、自己組 arge of ivity ch nduct g 織化、非線形・非平衡現象などをキーワードに国際的視野に立ち研究を推進して n i s dded u a s udie ic electr tion います。 図:柔軟で伸縮可能な電子伝導性高強度ハイドロゲル ffrac G E e the angl Interests of this group include soft mechanics of soft materials and their mallt s nspor a ecrea r t d r rrie u systems, e.g., gels; elastomers; biomimetic materials design; colloids; polymer o i prev n-gel R nano-composites; responsive materials and surfaces; elastic instabilities; I he EG N t – s –vi t o effec c self-organization; non-linear and non-equilibrium systems. ecifi of y th t i s w sho den Figure: Flexible and Stretchable Electro-Conductive Polymer Hydrogel. gher h t il n n i e G e a s o h w E t h g t A y t of 1 a,b stent ly. De and t hod. tand asurin ctivit moun igure consi − 1 , e met nders ective ondu F by me b p c u e . s m r o a t l d r e e c o u m r e a p w T r S z c EG, timi Info four830 ectri ried o vent. tions as op rting e car a sol the el serva ional ith 3% − 1 to r t o b w f e y p n o l a o p w e m d h n u e v c t s e n S o s G a sted denc 1.2 S a con tudie . The G is n the ing 07 Nanosystem out E sugge from Research 2014 depen use E re S1)Institute October, SAXS s e S2 i r s with Å − 1 d GI t the , beca , Figu Figur m eased a n y l n r 5 d to h a g n c o t i i .8 o fi n t D l t 1 i SS AX = wn ho signe ma pec %, σ morp as as DOT:P nd q Infor , GIW re sho to ex ソフトシステム SOFT SYSTEM ソフトマターモデリンググループ グループ長 : 米谷 慎 / Soft Matter Modeling Group Leader : Dr. Makoto YONEYA スマートマテリアルグループ グループ長 : 木原秀元 / Smart Materials Group Leader : Dr. Hideyuki KIHARA ソフトデバイスグループ グループ長 : 古屋 武 ( 兼 ) / Soft Devices Group Leader : Dr. Takeshi FURUYA(Acting) ソフトメカニクスグループ グループ長 : 古屋 武 ( 兼 ) / Soft Mechanics Group Leader : Dr. Takeshi FURUYA(Acting) t ti d not ycol duct r mo dies OT:PS t elec oping ne gl l con and , it is carrie f PED us stu paren and d ethyle cally ctrica T:PSS, mero t the ion o e y s s c u l t fi trans r i a e i e D n l e f c i E p f h e h b e s P O c a h g i p o t u S f u d s s m o o e u ] , s h devi v h r t t u y t 6 l t ven ctric and impro carrie [ 5 , aqueo uctivi 4 ] A d sol moele f the ns to lear. ology cond .[3 , r to an o o c h y e i t p t ) h s t i e r i OT s t t v O o h o d D i S n t r n M lm m reme ving in PE s con nduct as fo till ide (D roces used such cal o impro measu the fi are s i p r t er, c e e el How v ce its olo e h h p t g mor mizin sms i e n s a u h ec beca ying nge a tu s h c y nts Earl solve e l o b h a i p l r 当グループでは、ナノテクノロジーとバイオテクノロジーを融合させた革新的スマートセ re amo s and a ンシングに関する研究開発を行っています。ヘルスケア産業、安全安心な社会の実現に貢only sm ant in ns, o i t a 献するバイオセンサー、バイオチップ、生化学分析システムの実用化研究を重点的に行っalthough lic r app s i ていますが、センシングに必要な高性能新規酵素、糖鎖などの生体関連材料に関する基礎improved ion unter 2 . es i n o i rs 研究も行っています。 chang dispe ven l o r 図1:耐熱性酵素、2:バイオセンサーチップ、3:糖鎖を用いた毒素センサー co-s ms fo ma , r s o e di conf Our group s interest is in research and development of innovative smart sensing based ortstu rge. tr a o h r c h ess sync on the newly established nanosystem that includes both nanotechnology and s exc re T a O s D m E l P :PSS fi biotechnology. We work on fundamental research on highly functional enzymes and of lven s e s u o ca co-s vents glyco-chemistry as well as on applied research on biosensors, biochips and bioanalytical s of der, r o tudie s l ura systems, in order to contribute to the healthcare industry and safe-and-secure society. ry e v y 1 3 still cantl ha Figure 1: thermostable enzyme, 2: biosensor chip, 3: sugar-based toxin sensor. e s l h t e at mod ed th t n g e n i m i add xper a by in a e h r c a the there es in d ring l. use a catte t s e o 当グループは、ナノスケールの「形」に由来する特性や機能を有するソフトマテ tion a a p m s r fo this i e the in r l e l リアルの創製やその実用化を目指した研究を行っています。例えば分子の自己集 t a f s a cryst fi lm g n i r cal 積によって形成される有機ナノチューブやナノファイバーを用い、様々な分子や orde ologi re lity i lms a fi m S 材料を包接・放出する機能性ナノカプセルや液体の流動性を制御する材料の開発 obi d, :PS re cal explo ologi 図:抗がん剤を徐放する有機ナノチューブ に取り組んでいます。 t n y in e t er densi h diff y, l g nal n o i i s Our group is aiming at research and development of soft-materials with functional ri oport ] Surp b d o an nanoscale structures. Our research includes organic nanotubes and nanofibers the m ili ction h g u r de o lth formed by self-assembly of rationally designed molecules. These are applicable to carrie ure, a lm fi mak e h g t functional nanocapsules that capture and release various molecules and materials. which minin tion d n n , a rs conve their can control the fluidity of a liquid. ause ation ducto ,high-axial-ratio morphology becFurther, n t e rier t s l o ate r s b o c r i e a i t r x c m s e e in oly for sustained he ic sem emon is therelease of se int drugs. ayer 1 ] P ver, t ally fl Organic of its g a Organ . [nanotubes nicFigure: ng lanticancer :PSS) inten n e s i i a se T s t e h d r d u O u c c e i o d D a t e e v p c 2 ] A d be ic de trans can b e) (PE attrac e in m been ctron holeV), an fonat des. [ have xide e r ial us P o r t l l o t r e O e n f u e t i ( n l s a r h c e e t u t e s r t e a hyl s ensiv ir po nt el impor tting oltaic styren high c inexp dimet spare of the S can is an hotov n :poly , S r d p ) r a t o n i e r :P e c t a p n ) i e T e , a rgan l (EG nd in eight PEDO ecaus this p thioph rsely and o n of glyco tem b ices a lgightw ioxy ect s o ) v l n i e g s y i e e s s n D r r d e d e s E u e e r l n t s L p c i ea dis ylen s (O s ethy olyme ethyle lectri ance ore m h -eth diode ueous ing p uch a rmoe i3g,4 y enh cal an aq itting nduct ent, s in the The h ticall v o o m a l . t c e e g o s m ) s lectri n u t d a O i e h l ie dr ng (DMS ic lig econd entia , stud s t n d o a l orp p g e r m o fi basis ctric gle n a wide ating . l g a n in t grazi hita e y p o c s XS). T o (GISA pectr fi y b y d by t i studie mobil n I n situ 6 ] with i s. [ 1 f el sho o ion g dition intro could se the e h t ansist on the tr :PSS, s e c n e T:PSS id PEDO g-inc t i v i t c u nd cond XD) a f ng i ased r e e r t c t in sca c n o c e r er highe ties w ed 3 n i [ b . m s o result tors c since sed b , u y a p c o is osc n h c i h ion o w addit tance f n o i s s r rn patte carrie the q g e h n t o l a to s ction diffra cal 0 c ion t a r a f r t if cen The d G on at ction ightly a l r s f f i d d se s d e t r o hain ep interc usly r y ion r t c a r t e h cen that t G on y sed b a e G r E c in of f XD l A a W t I a G width he 2D n ns y Riv e sca b n i l d ※他の受賞はこちら。 Click here for more awards.(https://unit.aist.go.jp/nri/result/result2.html) e t d le ned repor esting s ll n ne. – π i g fi a s r u o l e g l f a a l w π u d a e a , s e ( l e t s l h s . C ered l siz stals gnal, ction e cry e wel rom t ation ly ord crysta T cry s wer ger si ion f nd th refl e weak PEDO fi lm at PE stron culat 020) erage s PSS, a h l ( e i v t h a h a t a d e t c g m o s e d e f t b e n n e u at inte ion o s syst oduce mplyi itativ ted th t e i istrib i r t a r c h p d , n t c e o s i a i y at th e m d u G l x s fl n m xy a wed Institute October, nd th ith E the q Nanosystem Research 2014 08 becau eak i 20) re rando the q ing, a lms w G sho per p hough he (0 k iable E h r t t f l c fi t l a i e h a a h t r S m w p i s S s , o t o ne o fr ed he s w on T:P ion rose d pla mpar fi lm ed. T PEDO y be n solut face- ソフトシステム SOFT SYSTEM スマートセンシンググループ グループ長 : 横山憲二 / Smart Sensing Group Leader : Dr. Kenji YOKOYAMA 形態機能ナノシステムグループ グループ長 : 増田光俊 / Morphofunctional Nanosystem Group Leader: Dr. Mitsutoshi MASUDA 受 賞 Awards 2014 年度高分子学会日立化成賞 2014 SPSJ Hitachi Chemical Award, The Society of Polymer Science, Japan タイトル: 高分子粗視化モデルを用いた半導体リソグラフィープロセスシミュレー ショ ン研究 Study on the Simulation of Semiconductor Lithography Processes Using Coarse-Grained Polymer Models 受 賞 者: 森田裕史 Hiroshi MORITA 受 賞 日: 2014 . 9 . 17 第 35 回本多記念研究奨励賞 The 35th Honda Memorial Young Researcher Award タイトル: ゲルを用いたカーボンナノチューブの新規分離法の開発 Development of New Separation Technologies for Carbon Nanotubes Using Gel 受 賞 者: 田中 丈士(ナノ炭素材料研究グループ長) Takeshi TANAKA (Group Leader, Carbon Nanomaterials Research Group) 受 賞 日: 2014 . 5 . 29 o poly porti s. [ ) an tenti ul fo erest exibl semic evice trans cting renes its po OLEDs ly fl se int ganic nic d holeondu e of des ( nical ly sty inten o c s t o a r o i u n t h d d a :p d c a c e e ) c t t e e i in tr e g l d trac nd be impor ophen sive e e in m mittin s and st stu ve at is an PV), a evice e mo ght-e xy thi expen ial us O i t h t d o ( n l i t d i i n e t o po sec n their d id n x a o , ght sulf htwei e c d n e a enh ylen 4-eth m i s t i p ) ono :PSS 2014.09.25 EDOT y ause c nderl e u b stem o 自動車用の小型コネクターの評価装置を開発 s o c ic the organ s e s i c i lta −電気接点で電気が流れるメカニズムを解明− stud otovo ta ctric e mpor l i e o Development of the Performance Evaluation erm r e a h t ing fur ] Add Apparatus for Small Connectors Equipped in Vehicles u o c l PSS methy d e y l l stab ical - Elucidated the mechanism of a current flow through an amat m e l b pro electric contact lished o the , S ransp S t :P DOT w s o e h i r car ood derst :P y 2014.05.23 g EDOT o P l o rph v l o s y co厚さ数ナノメートルの有機半導体材料の板状ナノ粒子を製造 ticall r u t c g stru plorin e −有機薄膜デバイスに使うナノ粒子をマイクロミキサーで連続製造− h t fi f i s o sign exces e ke a aOrganic m Semiconducting Material Made into Plate-like eport r o t der a s r e t t c ea spe Nanoparticles as Thin as a Few Nanometers PSS cr s hange c r rrie Micro-mixer continuously produces nanoparticles for organic d o n n a a Tak hous morp e thin film devices bserv o e stin fi d f o soli dition the orpho n i m e ang 2014.05.19 s i T:P y t ivi PEDO nduct . ho l p a et 分子間や原子間で働く弱い凝集力を光の照射で増強 mor yang gh u an −有機デバイス材料などの作成・改良技術への応用に期待− thro e Ram o t ] d 5 e 1 ut 11– attrib t Strengthening Weak Cohesive Forces among Molecules/Atoms c a ] r [ 5 diff DOT. r u o t t c stru tion by Light ffrac i ls in a t eterm s d y r - Potential application to fabrication and refinement of materials for noc , r e a t v e n How orie ded. e organic devices e oreov v i M t c ndu t y l n d e fer har d dif h nt e f the m o p o 2014.05.15 vel r e [ v . n hes is i proac 単層カーボンナノチューブを効率的に分散できる分散剤 or heref t y a X-r m n l e l l fi SS −光で簡単に外せて単層カーボンナノチューブ精製プロセスに応用可能− cha DOT:P c e l e for Efficient Dispersant for Single-walled Carbon Nanotubes the ethod t a c i r fab lar olecu le. Easily photodetachable dispersant applicable to purification of h a s c a s ter Yam nome e single-walled carbon nanotubes v R–UV a I h lms e s u r a c carrie y be obabl e g s. a l t e l l vo mod e Hal ; 2014.05.14 d y t d i s a den the rrier is e t s c a e e f incr l ef 赤外線カラー暗視カメラ用の撮像素子を開発 e Hal s n :P e e T r O S sc −手のひらサイズの小型カメラでカラー暗視撮影− PED OT:PS g for e razin l g b a t sui Development of an Imaging Device for an Infrared Color X . s A r W o ist (GI trans c s d y n X-ra tz a Night-vision Camera raher i t r e e h t p ne - Palm-sized camera for color night-vision imaging pro termi t s i s tran ical eoret os s why n pectr o s s a e re ta i y c l t a an 2014.05.01 cap nifi c f o e g y r t ivi 液晶を用いた気体分子のキラリティの簡便な検出法 cha nduct t ng i s dded u a s udie −気体試料を吹き付けるだけで分子の機能を左右する利き手を可視化− c i r t elec tion ffrac leSimple Method to Detect the Chirality of Gas Molecules g he EG n t a all rt o as p s n tra Using Liquid Crystals decre rrier u o i prev n-gel Chiral handedness dictating the functions of molecules can be G E IR the –vis–N o visualized simply by blowing gas onto the liquid crystal ffect e c ecifi of h y t t i s w sho den gher il on with g the As then y t n ,b f EG . t i d n i a o r d d . Deta e v n u n i t t o 1 y a s t s l a h n t a c mou igure consi − 1 , e met nders ective ondu F by me b p c u e . s m r o a t l d r e e c o u m r e a p w T r S z c mi EG, Info four830 ectri ried o vent. tions s opti rting e car a sol the el serva ional ith 3% − 1 to r t o b w t f e y p n o l a o p w e m d h n u e v c t s e n S o s sted denc 1.2 S a con tudie . The EG a G is n the ng 09 Nanosystem sugge from Research 2014 depen use E re S1)Institute October, SAXS s thout e S2 i a I u i 1 r e d r c g w u h − i e G e t s g o b F s i t a Å d t F n y, lm n, 5 d ha cre SS fi AXD a = 1.8 wn in holog signe matio pect t , σ in morp r as as DOT:P nd q Infor , GIW re sho to ex 最近の研究成果 RESEARCH RESULTS Location of NRI in the world Bu r 車 Ca 桜土浦 IC Sakuratsuthiura IC 産総研 つくば AIST Tsukuba バ ス Bu s JR荒川沖駅 JR Arakawaoki Stn. ス バ 速 Ai rp or tB us 速 バ ス Ai rp or t JR東京駅 JR Tokyo Stn. 成田空港 Narita Airport Bu s TX Akihabara Stn. TX Tsukuba Stn. 高 TX秋葉原駅 ss re バス 高 速 バ ス Hi gh wa yB us (7) TXつくば駅 つくばエ クスプ レス T suk ub aE xp in^2∂ b = (1/2)Wls E anchoring /2)Wl∂ b^2. = (1 (6) us 城空港 ort B irp A Ibaraki Airport ス バ 速 高 s -∂ )/d}^2, /2)K22A{(∂ b E twist = (1 f e bottom o between th ce n ta is d the the n (6), d is ation and In equatio gthe disclin in in ta n co n rical regio istortion is the cylind the twist d ch hi w t u ho strength, om, throug anchoring e groove bott th s ie pl ), W im n the solutio equation (7 bstituting present. In su By 1. t |∂ b| << to ssumed tha n for ∂ b in and it is a an equatio s a 0 = )/∂ b d obtain +E oring ate ∂ b, an of ∂(E twist anch can elimin e n o ), (7 (6) and equations 高 交通アクセス ‒ Access ‒ 羽田空港 ng E twist + E anchori Haneda Airport , = (1/2)r∂^2 (8) ナノシステム研究部門のロゴは、「蜂 : Megaphragma caribea 」と「虫メガネ ( 電子顕微鏡 )」をデザインしています。 この蜂は飛行能力をもつ地上最小の昆虫 ( 寄生バチ ) です。翅 ( はね ) の色分けは、当研究部門の4つの研究の柱に対応 しています。青が情報通信・エレクトロニクス対応(IT システム)、緑が環境・エネルギー対応(グリーンシステム)、 ピンクがライフサイエンス対応(ソフトシステム)、そして黄が、上記3つを結び付けるテクノロジーブリッジです。 The logo of our research institute symbolizes a bee and a magnifier (electron microscope). The bee is called Megaphragma caribea , which is known as the smallest animal in the world that can fly high by itself. The four colors of its wings correspond to the four main pillars of our research activity: blue represents information technology and electronics (IT System), green the environment and energy (Green System), pink life science (Soft System), and yellow the Technology Bridge that connects the above three categories. ★お問合せ★ 独立行政法人 産業技術総合研究所 ナノシステム研究部門 〒305-8565 茨城県つくば市東 1-1-1 中央第5事業所 Fax:029-861-6236 Mail:[email protected] Web:http://unit.aist.go.jp/nri/index_ j.html ツイッター:http://twitter.com/AIST_NRI ★CONTACT★ Manager Office, Nanosystem Research Institute Address:Central 5, Higashi, Tsukuba, Ibaraki 305-8565 Japan Fax:+81-29-861-6236 Mail:[email protected] Web:http://unit.aist.go.jp/nri/ twitter:http://twitter.com/AIST_NRI De en ge d l e b
© Copyright 2024