講義資料1

「固体物理学III」(理学部4年冬学期)
「物性物理学III」(大学院理学系共通講義)
2014年度
講義資料(超伝導)
物理学専攻
青木 秀夫
© H. Aoki
固体物理におけるゲージ対称性の破れ
超伝導
1987
© Nobel Foundation
超流動
1996
量子ホール効果
1985
BEC
© Nobel Foundation
1998
© Nobel Foundation
© ISTEC
図 8-2 © CERN
何故今超伝導か - 歴史
1906
1911
1924
1938
1957
1960’s
1962
1969
1971
1973
1983
1986
ヘリウムの液化(Kamerlingh Onnes)
水銀における超伝導の発見(Kamerlingh Onnes; ノーベル賞1913)
ボース・アインシュタイン凝縮の理論 (Bose & Einstein)
4Heにおける超流動の発見 (Kapitsa; ノーベル賞1978)
超伝導のBCS理論 (Bardeen, Cooper & Schrieffer; ノーベル賞1972)
量子液体の理論 (Landau; ノーベル賞1962)
ODLRO (Yang)
Supersolidの提案 (Andreev & Lifshitz)
3He超流動の発見 (Lee, Osheroff & Richardson ; ノーベル賞1996)
超伝導接合 (Josephson, 1973)
分数量子ホール効果の発見 (Tsui, Stormer & Laughlin; ノーベル賞1998)
銅酸化物における高温超伝導の発見
(Bednorz & Muller; ノーベル賞1987)
1995 冷却ボソン原子におけるボース・アインシュタイン凝縮の発見
(Cornell, Ketterle & Wieman; ノーベル賞2001)
2003-2004 冷却フェルミオン原子における超流動の発見、
BCS-BEC (JILA, MIT)
Evolution of Tc in superconductivity
room T
Still the highest
Tc ~ 130 K
liq N
pentacene
Tc (K)
picene
1st non-Cu SC
with Tc > 50 K
LaOFFeAs
liq 4He
1st aromatic SC
with Tc ~ 20 K
20082010
year
Phase diagram for various superconductors
Iron compound
cuprate
K2 © Chris Warner
fullerene
heavy fermion
4He
(Uemura, nature mat 2009)
Tc (K)
フェルミ温度 TF (K)
図 3-12 © Y. Uemura
Pressure effect in cuprates: hydrostatic experiment
(Takeshita et al, JPSJ 2013)
Carbon-based:
GIC
Diamond
Organic
Fullerene
Aromatic
TC (K):
Pairing symmetry: “Glue”:
12
4
14
33
18
s
s
s; d or p
s
?
Phonon
Phonon
Phonon; +el-el?
El-ph + el-el?
El-ph + el-el?
MgB2
40
s
Phonon
Hf, Zr nitrides
24
?
El-el?
Iron-based
55
s±; s++
El-el
d
El-el
spin/orbit mixed
El-el + SOI
Curates
130
Heavy fermions 18
超伝導単体
d
Cu, Ru compounds
Co compound
Hf nitrides
intermetallic/GIC compounds
p
Ce compound
fullerene
clathrates
organic metals
超高圧下の単体超伝導(©清水(阪大))
Li:
Li:
Fe:
O:
Matsuoka & Shimizu, Nature 458, 186 (2009).
Shimizu et al, Nature 419, 597 (2002).
Shimizu et al, Nature 412, 316 (2001).
Shimizu et al, Nature 393, 767 (1998).
attraction
el-el repulsion
(spin /charge)
phonon
isotropic pairing
Tc ~ 0.1ωD
100K  10K
anisotropic pairing
Tc ~ 0.01t
10000K  100K
anisotropic pairing
isotropic pairing
Layer-type structures favour electron-mechanism SC
spin-fluctuation mediated
pairing interaction
q2D
-
+
-
+
ky
3D
+ k
> - - ++
k
k
+k -
z
z
kx
(Arita et al, 1999;
Monthoux & Lonzarich, 1999)
ωD
y
x
Cf. Phonon-mediated
Cu, Ru compounds
Co compound
Hf compound
Ce compound
Fe compound
電子
フォノン媒介引力
図 3-1 (a)
(b)
図4-4
U
t~
~ 5 eV
図 Hubbardmodel
0.4 eV
Spin- and charge-fluctuation mediated pairing
c
Vsinglet :
ー
Vtriplet :
+
+
c±
+
c
c±
Tc ~ TF/100 is VERY low !
Cf. Laser-cooled Fermi gas(2004)
 Tc ~ 0.1 TF
 attractive int’action
↑Feshbach resonance
Tc
(1)Pairing int’action from el-el repulsion
= weak
(2) Self-energy correction
 quasi-particles short-lived
(Uemura 2004)
TF
(3) Pairing from el-el repulsion
= anisotropic
(i.e., nodes in DBCS)
-
+
+ -
Non-phonon mechanism SC/SF
1. Heavy fermion
 spin fluctuation mediated
2. Superfluid 3He
 hard core interaction
3. High-Tc cuprates
4. SC in the Coulomb gas
…
Kohn & Luttinger 1965; Chubukov 1993:
Repulsively interacting fermions
 Attractive pairing channel exists for T  0
(weak-coupling, dilute case)
SC from repulsion: nothing strange
Attraction  isotropic SC
V(k,k ’)
-
Repulsion  anisotropic SC
spin-fluctuation mediated
pairing interaction
+
-
+
-
attraction if D
changes sign
eg, d-wave pairing in cuprates
+
-
+