「固体物理学III」(理学部4年冬学期) 「物性物理学III」(大学院理学系共通講義) 2014年度 講義資料(超伝導) 物理学専攻 青木 秀夫 © H. Aoki 固体物理におけるゲージ対称性の破れ 超伝導 1987 © Nobel Foundation 超流動 1996 量子ホール効果 1985 BEC © Nobel Foundation 1998 © Nobel Foundation © ISTEC 図 8-2 © CERN 何故今超伝導か - 歴史 1906 1911 1924 1938 1957 1960’s 1962 1969 1971 1973 1983 1986 ヘリウムの液化(Kamerlingh Onnes) 水銀における超伝導の発見(Kamerlingh Onnes; ノーベル賞1913) ボース・アインシュタイン凝縮の理論 (Bose & Einstein) 4Heにおける超流動の発見 (Kapitsa; ノーベル賞1978) 超伝導のBCS理論 (Bardeen, Cooper & Schrieffer; ノーベル賞1972) 量子液体の理論 (Landau; ノーベル賞1962) ODLRO (Yang) Supersolidの提案 (Andreev & Lifshitz) 3He超流動の発見 (Lee, Osheroff & Richardson ; ノーベル賞1996) 超伝導接合 (Josephson, 1973) 分数量子ホール効果の発見 (Tsui, Stormer & Laughlin; ノーベル賞1998) 銅酸化物における高温超伝導の発見 (Bednorz & Muller; ノーベル賞1987) 1995 冷却ボソン原子におけるボース・アインシュタイン凝縮の発見 (Cornell, Ketterle & Wieman; ノーベル賞2001) 2003-2004 冷却フェルミオン原子における超流動の発見、 BCS-BEC (JILA, MIT) Evolution of Tc in superconductivity room T Still the highest Tc ~ 130 K liq N pentacene Tc (K) picene 1st non-Cu SC with Tc > 50 K LaOFFeAs liq 4He 1st aromatic SC with Tc ~ 20 K 20082010 year Phase diagram for various superconductors Iron compound cuprate K2 © Chris Warner fullerene heavy fermion 4He (Uemura, nature mat 2009) Tc (K) フェルミ温度 TF (K) 図 3-12 © Y. Uemura Pressure effect in cuprates: hydrostatic experiment (Takeshita et al, JPSJ 2013) Carbon-based: GIC Diamond Organic Fullerene Aromatic TC (K): Pairing symmetry: “Glue”: 12 4 14 33 18 s s s; d or p s ? Phonon Phonon Phonon; +el-el? El-ph + el-el? El-ph + el-el? MgB2 40 s Phonon Hf, Zr nitrides 24 ? El-el? Iron-based 55 s±; s++ El-el d El-el spin/orbit mixed El-el + SOI Curates 130 Heavy fermions 18 超伝導単体 d Cu, Ru compounds Co compound Hf nitrides intermetallic/GIC compounds p Ce compound fullerene clathrates organic metals 超高圧下の単体超伝導(©清水(阪大)) Li: Li: Fe: O: Matsuoka & Shimizu, Nature 458, 186 (2009). Shimizu et al, Nature 419, 597 (2002). Shimizu et al, Nature 412, 316 (2001). Shimizu et al, Nature 393, 767 (1998). attraction el-el repulsion (spin /charge) phonon isotropic pairing Tc ~ 0.1ωD 100K 10K anisotropic pairing Tc ~ 0.01t 10000K 100K anisotropic pairing isotropic pairing Layer-type structures favour electron-mechanism SC spin-fluctuation mediated pairing interaction q2D - + - + ky 3D + k > - - ++ k k +k - z z kx (Arita et al, 1999; Monthoux & Lonzarich, 1999) ωD y x Cf. Phonon-mediated Cu, Ru compounds Co compound Hf compound Ce compound Fe compound 電子 フォノン媒介引力 図 3-1 (a) (b) 図4-4 U t~ ~ 5 eV 図 Hubbardmodel 0.4 eV Spin- and charge-fluctuation mediated pairing c Vsinglet : ー Vtriplet : + + c± + c c± Tc ~ TF/100 is VERY low ! Cf. Laser-cooled Fermi gas(2004) Tc ~ 0.1 TF attractive int’action ↑Feshbach resonance Tc (1)Pairing int’action from el-el repulsion = weak (2) Self-energy correction quasi-particles short-lived (Uemura 2004) TF (3) Pairing from el-el repulsion = anisotropic (i.e., nodes in DBCS) - + + - Non-phonon mechanism SC/SF 1. Heavy fermion spin fluctuation mediated 2. Superfluid 3He hard core interaction 3. High-Tc cuprates 4. SC in the Coulomb gas … Kohn & Luttinger 1965; Chubukov 1993: Repulsively interacting fermions Attractive pairing channel exists for T 0 (weak-coupling, dilute case) SC from repulsion: nothing strange Attraction isotropic SC V(k,k ’) - Repulsion anisotropic SC spin-fluctuation mediated pairing interaction + - + - attraction if D changes sign eg, d-wave pairing in cuprates + - +
© Copyright 2025