LHC-ATLAS実験における ZHチャンネルを用いた ヒッグス粒子のインビジル崩壊の探索 日本物理学会、佐賀大学、2014年9月19日 大川英希, 他ATLAS Collaboration 筑波大学 数理物質系・数理物質融合科学センター 標準理論のヒッグス粒子か? (stat.) ATLAS Prelim. inc. (sys theory ) mH = 125.5 GeV (theory) H µ = 1.57+0.33 -0.28 H ZZ* H WW* + 0.35 - 0.32 + 0.20 - 0.13 + 0.17 - 0.10 l l µ = 1.00+0.32 + 0.21 - 0.21 + 0.24 - 0.19 + 0.16 - 0.08 -0.29 Combined H , ZZ*, WW* +0.21 µ = 1.35 -0.20 W,Z H bb µ = 0.2+0.7 Total uncertainty ± 1 on µ + 0.23 - 0.22 + 0.24 - 0.18 + 0.17 - 0.12 4l µ = 1.44+0.40 -0.35 Events / 0.1 Phys. Lett. B 726 (2013), 120 2500 Data + JP = 0 Background 2000 1500 1000 ATLAS + 0.14 - 0.14 + 0.16 - 0.14 + 0.13 - 0.11 500 ± 0.5 0 ± 0.4 s = 8 TeV 0.1 0.2 (8 TeV data only) +0.5 µ = 1.4 -0.4 Combined H b b, +0.36 µ = 1.09 -0.32 Combined +0.18 µ = 1.30 -0.17 + 0.3 - 0.3 + 0.4 - 0.3 + 0.2 - 0.1 + 0.24 - 0.24 + 0.27 - 0.21 + 0.08 - 0.04 + 0.12 - 0.12 + 0.14 - 0.11 + 0.10 - 0.08 s = 7 TeV Ldt = 4.6-4.8 fb-1 s = 8 TeV Ldt = 20.3 fb-1 -0.5 0 0.5 1 1.5 2 Signal strength (µ) ATLAS-CONF-2014-009 (2014) 大川英希 -1 L dt = 20.7 fb 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 |cos *| -0.6 <0.1 H H • 現時点でヒッグス粒子の観測・測定は、標準理論 と矛盾しない(シグナルの強度・スピン)。 • LHCではヒッグスの崩壊幅を直接測定できない。 間接測定でも崩壊幅の上限は標準理論の4∼5倍。 → 標準理論を超えた物理が、ヒッグスセクターに 存在する可能性が、現時点で棄却できない。 日本物理学会、2014年9月19日 2 標準理論を超えた物理(BSM)の探索 ヒッグスセクターでのBSM探索の方法: ATLAS Simulation Preliminary s = 14 TeV: Ldt=300 fb-1 ; Ldt=3000 fb-1 • • ヒッグス粒子の結合定数の精密測定 → 多くのモデルで数%以下の精度が必要。HLLHCのデータ(∼3000 fb-1)やILCを要する 。 gZ ATL-PHYS-PUB-2013-014 WZ Energy Frontier ヒッグス粒子のBSM崩壊の直接探索: 暗黒物質へのインビジブル(非可視)崩壊など. tg to be in this situation, in which the picture of the Higgs boson may be very di↵erent from that in the Z ut, since the other particles in the sector are heavy, it is difficult to conclude this except by precision 重いヒッグス粒子の探索 rement. • µZ al sizes of Higgs boson coupling modifications are shown in Table 3-1. More details of these estimates ven in [23]. BSMによる結合定数のずれ gZ Model V b Singlet Mixing 2HDM ⇠ 6% ⇠ 1% ⇠ 6% ⇠ 10% ⇠ 6% ⇠ 1% Decoupling MSSM Composite Top Partner ⇠ 0.0013% ⇠ 3% ⇠ 2% ⇠ 1.6% ⇠ (3 9)% ⇠ 2% Snowmass, Energy Frontier Report, 2013 < 1.5% ⇠ 9% ⇠ +1% Z 0.78 (Z )Z 0 able 3-1. Generic size of Higgs coupling modifications from the Standard Model values in classes of new ysics models: mixing of the Higgs boson with a singlet boson, the two-Higgs doublet model, the Minimal 日本物理学会、2014年9月19日 大川英希 persymmetric Standard Model, models with a composite Higgs boson, and models with a heavy vectorlike 0.1 0.2 = XY 0.3 X Y 3 ヒッグスのインビジブル崩壊 ヒッグス粒子と暗黒物質との相互作用による崩壊。超対称性などからも予想。 ZH随伴過程 暗黒物質? Vector-Boson Fusion q q χ W/Z H W/Z q χ q • ZH随伴過程及びvector-boson fusionのチャンネルは、特にインビジブ ル崩壊への感度が高い。 • Z(→ll)Hチャンネルは、バックグラウンドの評価が比較的し易い、 クリーンなチャンネル。 大川英希 日本物理学会、2014年9月19日 4 解析の方針 “Z+Missing ET (ETmiss)” を用いた探索 Events Phys. Rev. Lett. 112, 201802 (2014) 108 ATLAS 107 s = 8 TeV, → ℓℓ 106 L dt = 20.3 fb -1 105 → ℓ ℓℓ 104 → ℓℓ 103 → ℓℓ ℓ → 102 10 Missing ET: ビームラインに垂直な平面 における運動量の不均衡 • Data / MC 1 1.5 1 0.5 0 50 100 150 200 250 300 350 400 450 500 クリーンなチャンネルだが、シグナルの感度を下げず (ETmissのカットを 上げ過ぎず)に、Zバックグラウンドをいかに抑えるかがポイント。 大川英希 日本物理学会、2014年9月19日 5 Events / /8 イベントセレクション 107 6 ATLAS s = 8 TeV, 10 L dt = 20.3 fb -1 • シングルレプトン(e, μ)・ ダイレプトントリガーで事象を選択。 • Zボソン由来のe, μを選択; レプトンは3つ以上存在しない。 (pT>7 GeV) • • dϕ(l,l) < 1.7 → ℓℓ 105 → ℓ ℓℓ → ℓℓ ℓ ETmiss>90 GeV 4 10 → ℓℓ 3 → 10 102 10 Data / MC 1 2 ジェット(pT>25 GeV)が事象中に存在し ない。 1 0 0 0.5 1 1.5 2 2.5 3 pTmiss: 内部飛跡検出器のトラック から再構成したMissing ET ϕ ETmissを用いたZバックグラウンドの抑制 dϕ(ETmiss,pTmiss) < 0.2 ETmiss > 90 GeV dϕ(Z, ETmiss) > 2.6 |ETmiss - pTll| / pTll < 0.2 • • 大川英希 • • 日本物理学会、2014年9月19日 6 Not reviewed, fo 368 369 370 371 search channel via the H ! ZZ decay, especially for Higgs boson m At the LHC, the dominant ZZ production mechanism is from qu lesser extent from gluon-gluon fusion. Figures 1 and 2 shows the l ZZ production with qq¯ and gg initial states. バックグラウンド BGの大きさ • Z ZZ(→l+l-vv): qシグナルとの区別が極め q Z q¯ Z て困難. モンテカルロ (MC)で評価。 • WZ: MCで評価。3-レプトンコント q¯ Z (a) u channel ZZ production. ロール領域(CR)で確認。 (b) t channel ZZ production. • W+W-/tt&Wt/Z(→τ+τ-): e-μ CRを用いて、データから評価。 • • Z+jets: ABCD method(後述)を用いて、データから評価。適化でここま Figure 1: The SM tree-level Feynman diagrams for ZZ production th イベントセレ colliders. クションの最 で抑えた W+jets/multijet: H→WW解析などで用いられている手法によ g り、データを用いて評価。ほぼ無視できる。 大川英希 日本物理学会、2014年9月19日 Z 7 Z バックグラウンド サイドバンド 領域D Events / 20 GeV サイド バンド 領域C 1012 ATLAS s=8 TeV, L dt = 20.3 fb-1 ZH → ℓℓ + inv. 1010 miss ∆ϕ(E T Data Z ee, µ µ Other BG Top quark Sideband Region 108 miss , pTmiss) > 0. 2, |E T − pTℓℓ|/p ℓℓ T > 0. 2 WW WZ → ℓνℓℓ (incl.τ) 106 ZZ → ℓℓνν (incl.τ) 4 ZH → ℓℓ + inv., BR(H → inv.) = 1 10 102 1 シグナル 領域A サイドバンド 領域B Data / MC |ETmiss - pTll| / pTll ABCDメソッド 4 2 0 dϕ(ETmiss,pTmiss) 相関の極めて小さい2つの変数に対して、シグ ナル領域とサイドバンド領域を定義する手法。 NAest = NBobs obs NC obs ND 2011 2012 50 100 150 200 250 E miss [GeV] T Z BG 0.13 ± 0.12 (stat) ± 0.07 (sys) 0.9 ± 0.3 (stat) ± 0.5 (sys) 系統誤差は、NA/NB & NC/NDのカット依存性 、 Z以外のMCの差し引きによる不定性など NC/ND~0.1, α=1.07 (2011), 1.04 (2012) 大川英希 日本物理学会、2014年9月19日 8 + + W W /Top/Z(→τ τ ): Events / 10 GeV • W+W-/ttのダイレプトン崩壊事象&Wt/Z(→τ+τ -)事象におけるレプトンの フレーバー対称性を活用。 e-μ CRから、データを用いてBGを評価。 BG,est. Nee = BG,est. Nµµ = 1 2 1 2 data,sub Neµ k data,sub Neµ 1 k k= data Nee data Nµµ ATLAS 4 10 Preliminary s = 8 TeV eµ events 103 -1 Data L dt=13.0 fb Z Multijet W Top WW WZ ZZ * * SM H ZZ , H WW 102 10 Data / MC • eμ評価法 1.2 1 0.8 • NeμBG, est: BGの評価。 • Neμdata,sub: CRにおけるデータからからWW/Top/Z (→τ+τ-)以外のBGを差し引いた数。 • k-efficiency factor: 電子とミューオンの性能の違いを補正する因子 0 50 100 150 200 250 300 Emiss [GeV] T WW/Top/Z(→τ+τ-) 大川英希 2011 2012 0.5 ± 0.4 (stat) ± 0.1 (sys) 20 ± 3 (stat) ± 5 (sys) 日本物理学会、2014年9月19日 9 105 ATLAS Data -1 s = 8 TeV, L dt = 20.3 fb ℓℓ + e/ µ 104 Z boson WZ → ℓνℓℓ (incl.τ ) ZZ → ℓℓνν, 4ℓ (incl.τ ) 102 10 ZZは、4-レプトンCRの統計が不足。ZZ の測定された断面積測定とNLOの理論計 算は現時点で一致。 1.5 0.5 0 (ZZ) = 7.1+0.5 0.4 (stat.) ± 0.3(syst) ± 0.2(lumi.)pb NLO (ZZ) = 7.2+0.3 0.2 pb measured 1 50 100 150 200 250 300 350 400 450 miss ET 500 [GeV] レプトンの不定性1.0-1.5%.ジェット由来の不定性 3-6%。 PDF, スケールの不定性を、ETmiss分布の形への影響も 含めて考慮。 規格化への影響は、5%程度。 gg→WW/ZZ→l+l-vvの寄与も考慮 (qq→ZZの~3%)。 大川英希 ATLAS-CONF-2013-020 1.3 s= 7 TeV CT10 central value / Mid-point MSTW central value / Mid-point 1.2 NNPDF central value / Mid-point 1.1 1 0.9 0.8 LHC Higgs Yellow Report II Pdf+Alpha Uncertainty 日本物理学会、2014年9月19日 LHC HIGGS XS WG 2011 Data / MC 1 • • WW 10 • WZ/ZZ共に、MCで評価。WZは、3-レプ トンCRで確認。 Top quark 3 • • 1 + δenv (NLO) Events ZZ/WZ バックグラウンド s 0.7 100 150 200 250 300 350 400 450 500 550 10600 M4l [GeV] Events / 30 GeV インビジブル崩壊探索の結果 3 10 102 標準理論の予想からの有意なずれは ATLAS Data s = 8 TeV, L dt = 20.3 fb-1 ZH → ℓℓ + inv. ZZ → ℓℓνν (incl. τ) 観測されなかった WZ → ℓνℓℓ (incl. τ) WW, dilep. t¯ t, Wt, Z → ττ Z ee, µ µ W + jets, multijet, semilep. top 10 ZH → ℓℓ + inv., BR(H → inv.) = 1 • インビジブル崩壊の分岐比に、75% 1 Data / Expected ETmissを識別変数として、ヒッグスの observed (63% expected) @ 95% CL のちのCMSの結果よりも の制限を与えた。 2 1.5 1 0.5 20%良い制限 100 150 200 250 300 350 400 450 miss E T [GeV] • LHCで初めて得られた、ヒッグスの インビジブル崩壊の分岐比の制限。 4 Data Period 2011 (7 TeV) 2012 (8 TeV) ZZ → !!νν 20.0 ± 0.7 ± 1.6 91 ± 1 ± 7 W Z → !ν!! 4.8 ± 0.3 ± 0.5 26 ± 1 ± 3 Dileptonic tt¯, W t, W W , Z → τ τ 0.5 ± 0.4 ± 0.1 20 ± 3 ± 5 Z → ee, Z → µµ 0.13 ± 0.12 ± 0.07 0.9 ± 0.3 ± 0.5 W + jets, multijet, semileptonic top 0.020 ± 0.005 ± 0.008 0.29 ± 0.02 ± 0.06 Total background 25.4 ± 0.8 ± 1.7 138 ± 4 ± 9 Signal (mH = 125.5 GeV, σSM (ZH), BR(H → inv.) = 100%) 8.9 ± 0.1 ± 0.5 44 ± 1 ± 3 Observed 28 152 TABLE I. Number of events observed in data 日本物理学会、2014年9月19日 and expected from the signal and from each background source for the 7 and 811 大川英希 TeV data-taking periods. Uncertainties on the signal and background expectations are presented with statistical uncertainties Higgs-portalモデルによる解釈 Higgs-portalモデル:暗黒物質 (DM)がヒッグス粒子のみと相互作用。暗黒物質の反 応断面積が極めて小さくなり、既存の探索実験で未観測であることと整合。 100 LHCでの探索 χ χ 暗黒物質の直接探索実験 χ λhχχ ヒッグス・暗黒物質 の結合 λhχχ h h fN χ N (a) N (b) DM-核子の反応断面積 ヒッグスのインビジブル崩壊幅 ヒッグス-DMの結合定数 Figure 65: Feynman diagrams for the decay of the Higgs boson into dark matter particles (a) and scat2 exchange of a Higgs boson (b). The Higgs-dark tering of dark matter particles off of a nucleon with the matter interaction vertex has a coupling constant of λh hχ χ . In the scattering diagram the Higgs-nucleon (h ) coupling BR(h strength is ) =parameterized with a form factor, f N . (h ) (h 大川英希 ) + (h N SM ) 日本物理学会、2014年9月19日 12 DM−Nucleon cross seciton [cm2] Higgs-Portalモデルによる解釈 10-37 10-38 10-39 10-40 10-41 10-42 10-43 10-44 10-45 10-46 10-47 10-48 10-49 10-50 10-51 Higgs-portal Model s = 7 TeV, ∫ Ldt=4.5 fb-1 s = 8 TeV, ∫ Ldt=20.3 fb -1 ZH → ℓℓ + inv. スカラー マヨラナ ベクター DAMA/LIBRA 3σ CDMS 95% CL XENON10 LUX ATLAS, vector DM 1 • ATLAS 10 CRESST 2σ CoGeNT XENON100 ATLAS, scalar DM ATLAS, fermion DM 102 ATLASの結果のバンド は、ヒッグス-核子間の form factorの不定性に よるもの 103 DM Mass [GeV] ヒッグスのインビジブル崩壊比への制限は、ヒッグスと暗黒物質との結 合定数への制限を与える。Higgs-portalモデルでは、MDM<MH/2におい て、LHCが突出した感度を持つ。 大川英希 日本物理学会、2014年9月19日 13 今後の展望 • 14 TeV LHC及びHigh Luminosity LHC (HL- arXiv:1309.7925, ATL-PHYS-PUB-2013-014 H. Okawa, Moriond QCD 2014での発表 LHC)でのインビジブル崩壊への感度について は、SnowmassやECFA (2013)に向けて、既 に研究を行った。 • ZHチャンネル単独であっても、 3000 fb-1では BR Limit ATLAS CMS 300 fb-1 [23,32]% [17,28]% 3000 fb-1 [8,16]% [6,17]% BR(H→inv)<~10%に感度がある。超対称性や 他のBSMモデルにとっても非常に重要。 • VBFや他の探索チャンネルや又カプリング測定と合わせると更に感度が上がる。 • 今後は、他のチャンネルでのコンビネーションや、Run 2でのパイルアップの対策や ZH探索でのバックグラウンドの抑制・評価の改善等に取り組む。 大川英希 日本物理学会、2014年9月19日 14 まとめ • ヒッグス粒子が標準理論の枠内にあるかどうかを探るために有用な方法 の一つである、インビジブル崩壊の探索をZHチャンネルを用いて行っ た。 • 標準理論からの有意なずれは観測されなかった。LHCで初めて、ヒッグ ス粒子のインビジブル崩壊比に対して制限を与えた。 BR(H→inv.) < 75% (obs), 63% (exp) @ 95%CL。 • インビジブル崩壊比に対する制限を、Higgs-portal暗黒物質モデルにお いて解釈した。暗黒物質の質量がヒッグス粒子の半分以下である場合に は、突出した感度を持ち、直接探索実験と相補的な結果が得られた。 • Run-2に向けて、更なる改善・探索を行う。 大川英希 日本物理学会、2014年9月19日 15 バックアップ 大川英希 日本物理学会、2014年9月19日 16 EW for qq¯ → ZZ 7.1 Parton showering 7.1 Z BG systematic 7.4 Luminosity 7.3 Electron energy scale 7.1 Electron ID efficiency 7.1 Muon reconstruction efficiency 7.1 Jet energy scale 7.1 Sum of remaining systematic uncertainties 7.1 s = 8 TeV 25 ATLAS Simulation Preliminary All systematic 9.9 ATLAS Preliminary gg ZZ 2e2µ H ZZ 2µ2 No systematic 7.1 gg H* ZZ (S) 10-1 10-2 gg Events / 30 GeV d /dm4l [fb/GeV] ヒッグスの崩壊幅の間接測定 ZZ (B) 20 ATLAS-CONF-2014-042 Data gg+VBF qq (H* ) ZZ ZZ WZ Z( ee/ µ µ )+jets s = 8 TeV: Ldt = 20.3 fb-1 (H* upper ) ZZ Table 6: The expected 95%ggCL limit on µoff-shell in the 2!2ν channel, with a ranked listing of Other backgrounds -3 gg (H* ) ZZ (µ =10) All contributions (µ =10) each 10 systematic uncertainty individually, and comparing15to including no systematic uncertainty or all Stat.+syst. uncertainties B systematic uncertainties. The upper limits are evaluated using the CL s method, assuming RH ∗ =1. off-shell off-shell 10-4 10 10-5 5 10-6 200 B RH ∗ 400 600 400 800 1000 m4l [GeV] Observed 0.5 1.0 2.0 WW/Top/Z 500 600 700 mT [GeV] Median expected 0.5 1.0 2.0 µoff-shell 5.6 6.7 9.0 6.6 7.9 10.7 ΓH /ΓSM H 4.1 4.8 6.0 5.0 5.8 7.2 ΓH /ΓSM H 4.8 5.7 7.7 7.0 8.5 12.0 Alternative hypothesis B RH ∗ = 1, µoff-shell = 1 B SM = 1, µ RH ∗ = 1, Γ H /Γ H on-shell = 1.51 B SM = 1, µ RH ∗ = 1, Γ H /Γ H on-shell = 1 SM within the range of Table 7: The observed and expected 95% CL upper limit on µ and Γ /Γ off-shell H 日本物理学会、2014年9月19日 H 大川英希 B 0.5 < R ∗ < 2, combining the ZZ → 4! and ZZ → 2!2ν channels. The bold numbers correspond to the 17 ヒッグスの崩壊幅と生成断面積 i • • • • • 大川英希 H f 2 i 2 f H σi→H→f: ヒッグス生成過程i、崩壊過程fの反応断面積 κi: ヒッグスのiへの結合定数 κi: ヒッグスのfへの結合定数 ΓH: ヒッグスの崩壊幅 ΓHとκi2κf2が同じ比率で標準理論の予測に対してスケールすれば、 ヒッグスのシグナルの強度は、標準理論と変わらない。 日本物理学会、2014年9月19日 18 tegrated dataset of 300 fb 1 (left) and 3000 fb wo uncertainty scenarios described in the text. 1 (right). Projections CMS NOTE-13-002 CMS Projection rio 1 eory Unc. Expected uncertainties on Higgs boson couplings 3000 fb-1 at s = 14 TeV Scenario 1 3000 fb-1 at s = 14 TeV No Theory Unc. κγ Scenario 1: same systematics as Run 1 κW κZ Same systematics as Run 1, but w/o theory unc. κg κb κt κτ 5 ertainty 0.00 0.05 0.10 0.15 expected uncertainty 日本物理学会、2014年9月19日 signal coupling modifiers (right). 大川英希 strengths (left) and 19 Scenario I µˆ w/Theory error µˆ wo/Theory error Significance µˆ w/Theory error µˆ wo/Theory error +0.56 +0.54 3.2 +0.33 +0.32 0.54 0.54 0.19 0.18 +0.20 +0.18 - +0.19 +0.18 6.4 +0.18 +0.16 0.19 0.17 Projections: H→bb Scenario II 0.32 0.32 0.17 0.16 Table 12: Expected signal sensitivity as well as the precision on the signal strength measurement for mH = 125 GeVfor the one-lepton, two-lepton and combined searches with 3000 fb 1 with hµipuATL-PHYS-PUB-2014-011 = 140. Stat-only Theory-only Scenario I Scenario II 大川英希 Significance µˆ Stats error µˆ Theory error Significance µˆ w/Theory error µˆ wo/Theory error Significance µˆ w/Theory error µˆ wo/Theory error One-lepton 5.5 +0.18 0.18 +0.08 0.05 1.8 +0.57 0.57 +0.56 0.57 2.1 +0.48 0.47 +0.46 0.46 Two-lepton 4.6 +0.23 0.22 +0.08 0.06 3.5 +0.30 0.29 +0.29 0.29 - One+Two-lepton 7.1 +0.14 0.14 +0.09 0.06 3.9 +0.27 0.26 +0.26 0.26 4.1 +0.26 0.25 +0.25 0.24 Table 13: Expected signal sensitivity as well as the precision on the signal strength measurement for mH = 125 GeVfor the one-lepton, two-lepton and combined searches with 300 fb 1 and hµipu = 60 after One-lepton Two-lepton One+Two-lepton including the perspective of a more performant analysis. Stat-only Significance 15.4 11.3 19.1 µˆ Stats error of+0.07 +0.09 0.09 with+0.05 0.05significance 1 it can to be +0.27 . With an integrated luminosity 3000 fb 0.06 be observed an expected 0.26 +0.09 0.07 +0.07 0.08 +0.07 007 of 8.8 andTheory-only µˆ = ±0.14. µˆ Theory error Significance 2.7 8.4 8.8 Scenario I µˆ w/Theory error +0.37 0.36 +0.15 0.15 +0.14 0.14 +0.12 0.12 11 Conclusion µˆ wo/Theory error +0.36 0.36 +0.14 0.12 Significance 4.7 9.6 II production µˆ w/Theory error +0.23 with 0.22 leptonically - decaying+0.13 A study of Scenario Higgs boson in association W and 0.13 Z bosons using µ ˆ error +0.21 0.21 +0.11 0.11 wo/Theory parameterised functions to model the behaviour of the upgraded ATLAS detector at the high-luminosity p LHC with s = 14 TeV has been performed. Table 14: Expected signal sensitivity as well as the precision on the signal strength measurement for 1 mH = 125the GeVfor the one-lepton, two-lepton and[11], combined searches 3000 fb with 140 Following analysis strategy described in Ref. and using onlywith the decay modes ofhµi thepuW= and 日本物理学会、2014年9月19日 including thetoperspective of a electron more performant Zafter bosons leading a high energy or muon analysis. in the final state, we obtain expected sensitivities 20 jet ! miss ! miss Fig. 4. The azimuthal separation between the missing transverse momentum vector, p , and the nearest jet in the event !φ( p , p! T ) after the E Tmiss requirement, for T T the high mH search region. Figure (a) refers to the low pile-up data and figure (b) to the high pile-up data. H→ZZ→llvv探索 (2011) Table 1 The expected number of background and signal events along with the observed numbers of candidates in the data, separated into the low and high mH search regions and Phys. Lett. B, 717 (2012) 29 the low and high pile-up periods. The quoted uncertainties are statistical and systematic, respectively. Source Low mH search High mH search Low pile-up data High pile-up data Low pile-up data High pile-up data Z W Top Multijet ZZ WZ WW Total Data 40.1 ± 5.0 ± 7.9 4.6 ± 2.2 ± 4.6 23.2 ± 1.3 ± 5.4 1.1 ± 0.2 ± 0.5 33.4 ± 0.7 ± 3.9 23.3 ± 1.0 ± 2.8 25.5 ± 0.8 ± 3.0 151 ± 6 ± 11 158 265 ± 13 ± 67 5.8 ± 1.8 ± 5.8 27.9 ± 1.3 ± 5.3 1.1 ± 0.2 ± 0.6 36.7 ± 0.7 ± 4.3 25.2 ± 1.0 ± 3.0 32.4 ± 0.9 ± 3.8 394 ± 13 ± 67 442 0.8 ± 0.3 ± 0.8 1.5 ± 0.8 ± 1.5 16.0 ± 1.1 ± 4.0 0 .1 ± 0.1 ± 0.0 28.4 ± 0.6 ± 3.4 17.1 ± 0.8 ± 2.1 9.4 ± 0.5 ± 1.1 73.3 ± 1.8 ± 6.1 77 11.6 ± 2.1 ± 2.9 2.2 ± 1.3 ± 2.2 17.2 ± 1.0 ± 3.9 0 .1 ± 0.1 ± 0.0 31.9 ± 0.7 ± 3.8 18.9 ± 0.8 ± 2.3 13.3 ± 0.5 ± 1.6 95.2 ± 2.9 ± 6.9 109 mH [GeV] Signal expectation 16.4 ± 0.3 ± 2.9 14.4 ± 0.2 ± 2.5 6.2 ± 0.1 ± 1.1 2.7 ± 0.0 ± 0.5 17.5 ± 0.3 ± 3.1 15.4 ± 0.2 ± 2.7 6.5 ± 0.1 ± 1.1 2.9 ± 0.0 ± 0.5 Events / 30 GeV ATLAS 2011 s = 7 TeV 11.1 ± 0.2 ± 1.9 Events / 50 GeV 10.3 ± 0.2 ± 1.8 200 300 400 500 600 ATLAS 2011 s = 7 TeV 400 samples: the first uses the dilepton mass side70 ! miss ! jet shown independent control , p ), where the inclusive Z boH ZZ ll H inZZFig.ll4. At low !φ( p -1 -1 T data L dt = 2.4 fb data L dtT= 2.4 fb pile-up pile-up data 350 atHigh band and requires least onedata identified b-jet (Fig. 3(b)), while son High background dominates, Total a small discrepancy is observed be60 Total BG BG Top Top the second selects electron– tween the data and the expected backgrounds. This discrepancy is 300 events containing oppositely-charged 50 ZZ,WZ,WW ZZ,WZ,WW muon pairs (Fig. 3(c)). within the systematic uncertainties applied on the inclusive Z boZ,W Z,W 250 Additional backgrounds can arise from multijet son background. Signal (m =events 200 GeV)or inSignal (m = 400 GeV) 40 H H 200production due to heavy flavour decays or jets clusive W boson The signal efficiencies and overall background expectations are 30 misidentified as leptons. The normalisation of the inclusive W bosimilar in the electron and muon channels; therefore only com150 son background in this search is obtained from a control sample bined results are presented. The numbers of candidate H → ZZ → 20 100 of events with a like-sign electron–electron or electron–muon pair #+ #− ν ν¯ events selected in data and the expected yields from sig10 50of the dilepton mass distribution and with no in the sidebands nal and background processes are shown in Table 1. miss 0 3(d) shows the E T 0 b-tagged jets. Fig.150 distribution following 200 250 300 350 400 450this 200 300 400 500 600 700 日本物理学会、2014年9月19日 21 大川英希At large E Tmiss this distribution is dominated by the inprocedure. 6. Systematic uncertainties mT [GeV] mT [GeV] clusive W boson background. Not reviewed, for internal circulation only 1238 Fjet above is × thef1fake-factor. In contrast (16)to the fake-rate in matrix method, now t Nmulti− = ∑ NFF × f2 i listed selection iof the fake-factor is orthogonal to the numerator selection. From now on, we de se”. The vector on the right hand side of the equation describes the inaccessible truth quantities Nevents object passing the tight selection as “Good” (mis-identified) lepton, while the lepton i i i selection “Bad” (anti-identified) lepton, and we replace the symbols with. “G” NW +these = ∑quantities NRF × r1i ×this f2i + N f1i N ×RR r2i as +does NFF × f1i × f2i Since arejettruth means not contain the other components like“T”NRF jets&multi− FR × i with “B”. The fake-factor then is: of this the same holds for the vector on the left side of the(フェイクレプトンBG) equation, which means e.g. NT T does f ake NGood components like NT L . This leads to the fact that the definition of “L”Fi == is “pass loose selection einfake-factor method f ake N Bad This is in contrast the selectionselection Nloose to instandard which also all objects of the dight is in selection”. fact a “mapping” for lepton-like object to from jetsbasic from anti-lepton The expression 24 now can be written as: ection are contained. n selection. We can re-write equation 14 as below (simply take r1 = r2 = 1), Fake-factor法 coefficients f fake-rate) denote the probability in the loose selection is that a true fake i (called N 1 f2 f1 f1 f2 NRR NT T i i i i i i i N = N × F + N × F − 2N × F × F W + jets ∑ ucted as aN signal-like lepton (“Tight“) while the coefficients r represent the probability that a real GB 2 BG 1 BB 1 2 i 0 f1 (1 − f2 ) i NRF T L = 0 1 − f 2 (17) Nselection N the loose is reconstructed as a tight lepton. The indices i (i =i 1, 2) represent leading 0 0 1 − f (1 − f ) f N 1 1 2 FR LT i i N = N ×F ×F 0 lepton 0 (i =0 2) according (1 − f1 )(1 − to f2 )the N NLL FF = 1) or subleading lepton pT .multi jet ∑i BB 1 2 1239 1240 W+jets/Multijet 1241 1242 1243 events events } } Nevents ove equation we can see that the matrix elements which used to correct real lepton contribui i i NW + jets&multi− jet = ∑ NGB × F2i + NBG × F1i − NBB × F1i × F2i f ake real w set to be zero. Therefore these real lepton correction terms have toNbe replaced withi MC N データから tight tight when dealing with control samples. These corrections will評価する数 be applied for the entries in the f = r = real (15) The fake-factor method only needs to deal with the fake-factor determination withou f ake 1244 (Nij: lepton i,jのある事 N the matrix which are related to real lepton contribution processes. matrixreliably with small statistic control samp Nloose (R:dilepton realレプトン, loose ItThis 1245 leptonfrom efficiency determination. also works 象数; L: looseレプト n beン, easily solved and the expression for the background estimation then can be towritten in 1246 the matrix method normally needs have enough statistics to get a robust estimation F: fakeレプトン) T: tightレプトン) nverting the matrix in equation 14, one can get the truth variables and the from measurable quantities: 1247 select the fake-factor method as the primary method to contribution estimate the W + jet and multi- publication. 16 where i runs over all selected di-lepton nd Multijets can be estimated by usingforEquations hich pass “Loose”Fake-factorのCRによる不定性、pileupによる不定性などを考慮。 lepton cuts and all other ZH selection cuts. 12.6.4 Fake+factor measurement using Z+jet control sample 1248 • 1249 The fake-factor is measured via a Tag and Probe method using jet-enriched sample. We fi 1251 lepton-object criteria, then describe the control sample selection. W+jets/Multijet Nevents selection 1252 The “Good”ilepton selection sample is the same as the full sele i ifrom thei jet-enriched i i N2011 ×Ther1(stat) × ±f2lepton + NFR × f × r2 jet-enriched sample is in fac W+ 1253jets in = the ZH analysis. “Bad” selection 0.020 ±NRF 0.005 0.008 (sys) 1from the 1254 selection i(or invert some lepton selection cuts) such that the prompt leptons from W an 2012 0.29 The ± 0.02 (stat) ± 0.06 1255 suppressed. definitions ofevents “Good”(sys) and “Bad” leptons are summarized in Table 3 N i fake background i i estimation, since the faked o 1256 overlap removal with a jet is important for (16) N = N × f × f multi− jet overlap with jets. FFIn the 1nominal 2 analysis, the selected 1257 less isolated and usually electron 日本物理学会、2014年9月19日 i 22 1258 overlaps with a selected jet with 0.2 < ∆R(e, jet) < 0.4, and the selected muon is remove 1250 ∑ 大川英希 ∑ 103 2 10 Data ATLAS ZZ → ℓℓνν (incl. τ) s = 7 TeV, L dt = 4.5 fb-1 ZH → ℓℓ + inv. WZ → ℓνℓℓ (incl. τ) WW, dilep. t¯ t, Wt, Z → ττ Z 10 ee, µ µ W + jets, multijet, semilep. top ZH → ℓℓ + inv., BR(H → inv.) = 1 Events / 30 GeV Events / 30 GeV ZHインビジブル結果 2 10 ATLAS Data s = 8 TeV, L dt = 20.3 fb-1 ZH → ℓℓ + inv. ZZ → ℓℓνν (incl. τ) WZ → ℓνℓℓ (incl. τ) WW, dilep. t¯ t, Wt, Z → ττ Z 10-1 ee, µ µ W + jets, multijet, semilep. top 10 1 ZH → ℓℓ + inv., BR(H → inv.) = 1 2 1 100 150 200 250 300 350 400 450 miss E T [GeV] Data / Expected 1 10-2 3 Data / Expected 103 2 1.5 1 0.5 100 150 200 250 300 350 400 450 4 miss E T [GeV] Data Period 2011 (7 TeV) 2012 (8 TeV) ZZ → !!νν 20.0 ± 0.7 ± 1.6 91 ± 1 ± 7 W Z → !ν!! 4.8 ± 0.3 ± 0.5 26 ± 1 ± 3 Dileptonic tt¯, W t, W W , Z → τ τ 0.5 ± 0.4 ± 0.1 20 ± 3 ± 5 Z → ee, Z → µµ 0.13 ± 0.12 ± 0.07 0.9 ± 0.3 ± 0.5 W + jets, multijet, semileptonic top 0.020 ± 0.005 ± 0.008 0.29 ± 0.02 ± 0.06 Total background 25.4 ± 0.8 ± 1.7 138 ± 4 ± 9 Signal (mH = 125.5 GeV, σSM (ZH), BR(H → inv.) = 100%) 8.9 ± 0.1 ± 0.5 44 ± 1 ± 3 Observed 28 152 TABLE I. Number of events observed in data and expected from the signal and from each background source for the 7 and 日本物理学会、2014年9月19日 238 大川英希 TeV data-taking periods. Uncertainties on the signal and background expectations are presented with statistical uncertainties ZZの理論からの不定性 1.2 NNPDF central value / Mid-point 1.1 1.4 ss==77TeV TeV CT10 central value/ Mid-point MSTW central value/ Mid-point 1.2 1.3 1.2 1.1 1.1 NNPDF value/ Mid-point QCD Scale Q = central mZ/2 (NLO CT10) QCD Scale Q = 2mZ (NLO CT10) gg Ratio σ(Q) / σ(mZ) MSTW central value / Mid-point 1.5 1.3 LHC HIGGS HIGGS XS XS WG WG 2011 2011 LHC CT10 central value / Mid-point env s= 7 TeV NLO Ratio σ1(Q) + δ/ σ(mZ) (gg) 1.3 LHC HIGGS XS WG 2011 1 + δenv (NLO) LHC Higgs Yellow Report II 1 1 1 1 1 1 11 0 0.9 0.9 0.9 0.8 0.8 0.7 0.8 0 0.6 0 Pdf+Alpha Uncertainty s 0.7 100 150 200 250 300 350 400 450 500 550 600 M4l [GeV] 0 Pdf+Alpha Uncertainty QCD Scale Uncertainty s 0.7 0.5 300350 400 400450 500 500 550 600 100100 150 200200 250 300 600 M M4l4l[GeV] [GeV] 0 QCD scale uncertainty is reduced for our llvv analysis due to: 1. Non-presence of Zγ contributions for ZZ→llvv 2. Our ZZ section samples use dynamic instead of the with fixed scale) Fig. 98: The difference between the central value of the cross and section computed 3 Fig. 100: The ratio ofthe thecross crossscale sections computed at different (∗) different PDF sets and the total PDF+αs variation (bluevalue markers) themfor by qq plus→and qq → ZZminus → 1σ 2e2for µ (left) and gg → of thevarying QCD scale 24 大川英希 筑波大学、2014年4月8日 ZZ(∗) → 2e2µ (left) and for gg → ZZ(∗) → 2e2µ (right)7as a function of m2e2The 7 TeV TeV from MCFM. linefrom is theMCFM. parametrisation describe µ atred ZH→ll+invisibleシグナル • HAWKというプログラムを用いて評価。 Higgs pT Uncertainty • ETmissの分布の不定性は、主にNLOのelectroweak correctionから。 0.1 ZH 8 TeV 2012 ZH 7 TeV 2011 0.08 0.06 0.04 0.02 100 150 200 250 300 Higgs pT 大川英希 筑波大学、2014年4月8日 350 400 450 Emiss [GeV] T 25 600 ATLAS 500 ZH ,SM s = 7 TeV, L dt = 4.5 fb-1 × BR(H s = 8 TeV, L dt = 20.3 fb-1 400 ZH inv.) [fb] リミット 300 ZH → ℓℓ + inv. Observed 95% CL limit Expected 95% CL limit ±1 ±2 200 100 0 大川英希 150 200 250 300 日本物理学会、2014年9月19日 350 400 mH [GeV] 26 have reported an observation of a dark matter signal, including CRESST [62], DAMA [63], and χ NT [64]. The most recent observation from the CDMS collaboration [65] provides compellingχ nce an 8.6 GeV dark matter particle. Not all of the observations are consistent with each other and λhχχ results are disputed by the community. Direct detection experiments make no a priori assumption the mechanism by which dark matter particles interact with Standard Model particles, but it is le that the interaction is through the exchange of a Higgs boson. If dark matter couples toλhχχ the Stanh h the Higgs mass then Model through the Higgs boson and the mass of the particle is less than half s to the dark matter particle will enhance the invisible branching fraction. Under the assumption fN ark matter couples to the Standard Model only through the Higgs boson we aim to place limits ヒッグス-DMの結合定数 DM-核子の反応断面積 ヒッグスのインビジブル崩壊幅 imentary to the direct detection results on the mass and interaction cross section of the dark matter χ N e. (a) (b) ggs Portal models [66, 67, 68] make a simple, ad-hoc extension to the Standard Model by introg a new particle that couples to only the Higgs boson. The interaction strength is introduced with (h ) Figure 65: Feynman diagrams for the decay of the Higgs boson into dark matter ) = pling constant, λhBR(h . Within this model the scattering and decay process can be compared by exχχ (h ) + (h tering SM ) of dark matter particles off of a nucleon with the exchange of a Higgs boso ng the limits in terms of this coupling constant. Figure 65 shows feynman diagrams for both the matter interaction vertex has arules coupling constant of λhχ χ . In the scattering diagra and scattering processes where λhχ χ appears in both diagrams. Using the feynman for these coupling strength in is terms parameterized with a form factor, fN . ms the Higgs partial width and scattering cross section are determined of λhχ χ . The Higgs width for the decay to dark matter particles for the scalar, vector, and fermion cases is given in ions 22, 23, and 24 respectively. インビジブル崩壊と暗黒物質 (h Γ Scalar ) (h → χ χ ) = λh2χScalar v2 χ 64π mh 2 h ! " 2mχ 1− mh #2 $1/2 ! " #2 $1/2 2 Vector v2 % & λ 2mχ hχ χ 4 2 2 4 1 − m − 4m ΓVector (h → χ χ ) = m + 12m χ h χ 256π m4χ mh h mh ΓMajorana (h → χ χ ) = 2m λh2χMajorana v h χ 32π Λ2 ! " 2mχ 1− mh #2 $3/2 N (22) = σχScalar N σχVector N(23) = λh2χScalar χ m4N fN2 ! " 16π m4h mχ + mN 2 λh2χVector χ m4N fN2 " ! 16π m4h mχ + mN 2 2 Majorana λ m2χ m4N fN2 hχ χ Majorana σχ N (24) = ! " 4π Λ2 m4h mχ + mN 2 he partial width is a function of only the Higgs bosonThe mass, the section dark matter the vacuum 1474 cross has mass, an additional dependence on the nucleon mass, mN an tation value, and the coupling constant. Note the introduction of a cutoff scale, Λ in the fermionic 1475 which quantifies the coupling strength between the Higgs boson and the Nucleon. In this case the Higgs interaction operator has dimension five and is non-renormalizable. A cutoff 1476 termined using lattice calculations and suffers from large theoretical uncertainties [ s added that assumes the presence of new physics at a higher energy scale which would produce a ouplings to photons, , and gluons, g , are introduced to absorb the possible les through loops. The Higgs boson production modes are assumed to be the ATLASの結合定数測定から CONCLUSIONS h2 P i = i2 h / h,SM = = 0.0023 2 P i + i2 /(1 BRi ) h / h,SM , is parametrized by ATLAS-CONF-2014-010 i width of the Higgs boson to the SM expectation, -2 ln Λ(BR ) 9 14 (18) ∫ s= 8 TeV, ∫ Ldt = 20.3 fb 10 = 125.5 GeV to photons and gluons are 0.0023 0.085 g2 + 0.91, 12 h → γ γ , ZZ*, WW*, ττ, bb, ATLAS Preliminary s= 7 TeV, Ldt = 4.6-4.8 fb -1 miss Zh → ll + ET obs. -1 : exp. h → γ γ , ZZ*, WW*, ττ, bb : s of a Higgs boson with mh [κ γ , κ g, BRi ] obs. exp. 8 d 0.91 is the sum of the branching ratios of the Higgs boson to massive partition and decay rates of all channels are fit with functions of g , , and BRi . 6 plings are treated as nuisance parameters. 4 od scan as a function of BRi is shown in Fig. 6. There is a lower physical 0, with the SM corresponding to BRi = 0. Ignoring this boundary, the 2 gs boson to invisible final states is measured to be BRi = 0.02 ± 0.20 with 0 from the Zh ! `` + nnels, while the expected value is 0.00 ± 0.21. If data -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 +0.29 BRi d, the measured (expected) value is BRi = 0.16+0.29 (0.00 0.30 0.32 ) [13]. The , BRi ] parametrization used are listed in Models 6 and 7 of Table 1. Figure boson 6: Likelihood scanto of massive the invisible branching BRi is negative because the Higgs couplings particles are ratio of the Higgs boson, BRi , where th Higgs measurements: observed (55%expected) @ CL profiled. The observed an to photons, , in andthe gluons, g , 95% have been e SMSM values, so the measuredloop-induced overall41% µh couplings >1 is accommodated fit by likelihoods are each shown with and without of expected) the Zh ! `` +@ ETmiss channel. SM Higgs measurements+ZH→ll+invisible: 37% observed 95% CL Ig n total width. The smaller expected uncertainty when including thethe Zhinclusion ! (39% physical boundary BR the lines atproduces 2 ln ⇤ =an 1.0 and 2 ln ⇤ = 4.0 correspond approx strates the increase in sensitivity. Accounting fori the0,boundary 68% CL (1 ) and 95% CL (2 ), respectively. CL upper limit of BRi < 0.37 (0.39) using the combination of all channels. pper limit without including the Zh ! `` + ETmiss data is BRi < 0.41 (0.55). n the vector boson fusion and associated ZH production modes CMSのインビジブル崩壊探索 Table 9. Summary of 95% CL upper limits on · B(H ! inv)/ SM obtained from the VBF search, the combined ZH searches, and the combination of all three searches. arXiv:1404.1344 mH (GeV) 115 125 135 145 200 300 Observed on VBF 0.63 (0.48) 0.65 (0.49) 0.67 (0.50) 0.69 (0.51) 0.91 (0.69) 1.31 (1.04) (expected) upper limits · B(H ! inv)/ SM ZH VBF+ZH 0.76 (0.72) 0.55 (0.41) 0.81 (0.83) 0.58 (0.44) 1.00 (0.88) 0.63 (0.46) 1.10 (0.95) 0.66 (0.47) — — — — 9 Dark matter interactions We now interpret the experimental upper limit on B( H !
© Copyright 2025