宇宙背景放射 EBL: ExtragalacFc background light (紫外線から近

宇宙背景放射 EBL: Extragalac-c background light (紫外線から近赤外線)
木曽シンポジウム 2014, 7/10-­‐11 コスモス会館 川良公明(天文センター)
EBL(Extragalac-c Background Light) -­‐-­‐ 銀河 -­‐-­‐ IGM(ダスト、ガス、星) Dark Stars sical Journal, 745:166 (7pp), 2012 February 1
Maurer et al.
WIMP D
M p
owered s
tars
-­‐-­‐ Exo-c energy release Table 1
10
Dark Star Parameter Range
Sciama+1997 L /M
∆t
z
SFR
10
10
15
10
10 Maurer+2012
10
10
10
10
10
10
5
10
imum value of LMR is close to the Eddington limit and therefore
upper boundary for the DS parameter space.
10
前景放射 a simplification,
a constant SFR over a certain
od is assumed which can be expressed as a mass
te in units
of M気による散乱 yr Mpc :
-­‐-­‐ 大
!
10 0.1
for z ! z ! z
SFR
1
10
100
(z) =-­‐-­‐ 点源(星) (5)
Wavelength
[µm]
0
elsewhere,
Figure 3. Two different DS parameter sets (red dashed: T = 7500 K, M
-­‐-­‐ 黄
道光(ZL) = 690 M ; blue dashed: T = 5000 K, M = 106 M ). Both models are
is a normalization factor, varied in the range
calculated with SFR
= 10 , ∆t = 10 years, z = 5. Gray markers:
bove, z indicates the minimal value of redshift
EBL measurements and limits adopted from Mazin & Raue (2007); gray: upper
-­‐-­‐ 銀
河拡散光(DGL-­‐ダストで散乱された星の光) formation can still occur, and z
denotes the
limits from TeV observations (realistic model) from Mazin & Raue (2007).
the DS formation epoch. The ansatz for the SFR
Black: EBL lower limit by Kneiske & Dole (2010). The total EBL shape in the
presence of a DS contribution is the sum of the lower limit and the specific DS
paper is strongly simplified and more elaborate
2
DS
5
⊙
7
5
9
Norm
−7
−5
−3
1
-2
3
min
-1
2
νIν [nW m sr ]
⊙
⊙
0
−3
−1
-1
Norm
min
max
DS
Norm
⊙
min
max
Norm
DS
−3
DS
9
⊙
min
木曽観測所におけるDGL研究 Ienaka+2013
DGL-­‐IMS emission(100um)の関係は、 op-cally thinの条件では線形 I(DGL) = b*I(ISM 100um) | | absorp-on of starlight ScaUering of starlight 線形関係からのズレ à 星、黄道光の差し引きに異常 MBM32 分子雲 2KCCD 45’x40’
The Astrophysical Journal, 767:80 (12pp), 2013 April 10
DGL – 100um 相関
Ienaka et al.
DGLスペクトル b = DGL/100um The Astrophysical Journal, 767:80 (12pp), 2013 April 10
Ienaka et al.
Figure 6. Correlation slopes b(λ) = ∆Sν (λ)/∆Sν (100 µm) as a function of wavelengths.
Table 2
DGL Model Parameters
傾きbは、100umの強い方向ではサチル – op-cal depth 効果 Band
S (λ) = a(λ) + b(λ)S (100 µm)
S (λ) = a (λ) + b (λ)S (100 µm) + c (λ)S (100 µm)
0.65-­‐0.9umはデータの空白地帯、フリンジのために拡散光が測れない a(λ)
b(λ)
a (λ)
b (λ)
c (λ)
(kJy sr )
(×10 )
(kJy sr )
(×10 )
((kJy sr ) × 10 )
àOH emissionを避けたM815フィルターを木曽に整備
B
195.23 ± 0.12
1.61 ± 0.11
194.28 ± 0.50
2.17 ± 0.28
−0.08 ± 0.04
ν
ν
Q
ν
Q
−1
g
299.16 ± 0.16
−3
2.25 ± 0.14
Q
ν
Q
−1
298.00 ± 0.60
Q
2
ν
Q
−3
2.80 ± 0.34
−1 −1
−0.07 ± 0.04
−6
BO (Before ours) Domimguez+2011 VHE γ-­‐ray limitと矛盾 VHE γ-­‐ray による上限値 γ(VHE) + γ(EBL) -­‐> e+ + e-­‐ λ(EBL) = 1.24(E/TEV)um LETTERS
dN/dE = N0E-­‐Γ Γ <1.5はBlazar physicsと矛盾 Figure 2 | The HESS spectra of 1ES 11012232, corrected for absorption with
three different EBL SED values, as labelled in Fig. 1. Red, observed data;
blue, absorption-corrected data. The data points are at the average photon
energy in each bin, also used to calculate the optical depth for
This result is also insensit
intrinsic slope. A different v
results, will shift the limit a
differences would qualitativel
Aharonian+2006 of G int ¼ 1.0 would loosen th
Alternative
scenarios which
Z=0.186 blazar
with
high O–NIR
fluxes form
discovery in their own right,
given their exotic implicatio
the intrinsic spectra softe
(.300 nWm22 sr21; see Fig.
other measurements1,26, and c
reasonable cosmological mod
A more viable alternative is
feature of the TeV blazar emiss
been envisaged6. For exampl
mono-energetic electrons (E 0
bulk motion Lorentz factor)
regime with a narrow-band
distribution), may lead to very
at e g < E 0, reproducing spect
features should become direct
closer, less absorbed objects o
AO(Ajer ours) Matsuoka+2011 Pioneer 10/11 – launched 1972-­‐72 IPD cloudの外(R>3.2AU) PioneerのOp-cal EBL は Galaxy counts に一致 -­‐> HST(WFPC2)はZL混入、IRTS, COBE/DIRBEにも混入? urnal, 736:119 (14pp), 2011 August 1
EBLの再評価(1AU) HST FOS – 0.2 – 0.7 um 54 fields – 728 spectra 前景放射 -­‐-­‐ 大気散乱ß Nighome -­‐-­‐ 点源(星) -­‐-­‐ 黄道光(ZL) ß 難しい! -­‐-­‐ 銀河拡散光(DGL) 0.015
0.4
0.010
0.2
0.005
RSD (MJy/sr)
RSD (MJy/sr)
0.12
0.8
0.10
成分分離 Obs = ZL + DGL + Residual 0.6
(b’) PRISM 0.27µm 0 - 50 MJy/sr
0.4
ZL = a*ZL(1.25um) :ZL(1.25um) = DIRDE ZL model DGL = d1*(I100um) – d2*I(100um)^2 0.2
第2項 satura-onを考慮 0.180
0.0
1 – exp[-­‐d*I(100um)], arctan[d*I(100um)]でもよい? 0.113
0.047
ZL分離(Obs – DGL vs ZL 0.5model) 0.7
-0.020
0.0
DGL分離(Obs – Z0.3L vs 10.4
00um)
0.1
0.2
0.3
0.4
0.6
0.1
0.2
0.5
10
20 model (MJy/sr)
30
Zodiacal
100µm (MJy/sr)
40
50
0.12
0.10
Obs - DGL (MJy/sr)
0.080.6
0.06
0.4
0.04
0.02
0.2
0.00
RSD (MJy/sr)
0.113
0.113
0.047
0.047
0.12
0.7
(d’) PRISM 0.55µm 0 - 50 MJy/sr
0.08
0.06
0.04
0.02
0.00
-0.020.0
0.180
0.180
-0.020
-0.020
0 0.0
0.6
Zodiacal model (MJy/sr)
(d) PRISM 0.55µm 0 - 20 MJy/sr
(c’) PRISM 0.55µm 0 - 50 MJy/sr
RSD (MJy/sr)
RSD (MJy/sr)
.7
(c’) PRISM 0.55µm 0 - 50 MJy/sr
Obs - DGL (MJy/sr)
0.6
0.020
0.000
0.0
0.180
-0.005
0.02
0.113
0.01
0.047
0.00
-0.020
-0.01
0.0
20
0
Obs - ZL (MJy/sr)
0.8
RSD (MJy/sr)
Obs
- ZL
(MJy/sr)
Obs
- DGL
(MJy/sr)
0.025
Zodiacal model (MJy/sr)
(c) PRISM 0.55µm 0 - 20 MJy/sr
Obs - ZL (MJy/sr)
0.8
0.1
5 0.2
0.3 10 0.4
0.515
Zodiacal
(MJy/sr)
100µmmodel
(MJy/sr)
0.6
0.7
20
-0.02
0.180
0.113
0.047
-0.020
0
10
20
30
100µm (MJy/sr)
40
50
r)
(d’)the
PRISM
0.55µm
0 -at
50 0.27
MJy/sr
e 5. Fitting to
PRISM
data
and 0.55 µm. The left and right panels show fits to the 0 - 20 and 0 - 50 MJy sr−1 sa
0.10
tively. Iν,i (Obs) − Iν,i (DGL) (i.e., Iν,i (ZL) + Iν,i (RSD)) against the ZL model flux is plotted in panels (a), (a’), (c) & (c’)
黄道光のスペクトル (0.2 – 3 um) I (nW/m2/sr)
1000
ZL
10000
100
(a)
10
0.2
0.3
0.4 0.5 0.6
0.8 1.0
(µm)
2.0
黒丸 -­‐ HST FOS, 白丸(compiled by leinert+1998) 近赤外 – IRTS(Matsumoto+1996), CIBER(Tsumura+2010) (b)
1.4
点線 – 太陽スペクトル 紫外線で弱い、 近赤外線に超過 1.2
3.0
UV to optical
background emission
DGLスペクトル 11
●-­‐ HST FOS, ○ -­‐ Pioneer, 菱形 – GALEX
ν bi (nW/m2/MJy)
100
DGL spectrum: Correlation slope
ZDA04(BC03) × 2
WD01
10
ZDA04
1
0.15
0.2
0.3
0.4 0.5 0.6
λ (µm)
0.8
1.0
Residuals(>0.3um) ZL-­‐dominant, EBLにあらず K.Kawara, K.Sano and Y.Matsuoka
Pioneerとの差はZL residualsによるものとする EBL = Residuals – ZL-­‐residuals EBL Galaxy counts – op-cal/near-­‐IRで一致 UVではEBL超過 (Exo-c?) Panel (a) Illustrates the residuals from far-UV to near-IR wavelengths along with the missed ZL component. The da
the extended part of the missed ZL component. The missed ZL spectrum up to 2.5 µm is 0.0217 × the ZL spectrum sc
−1 given by Kawara et al. (2014), while the extended part is 0.0217 × the ZL spectrum by the DIRBE model. Pane
e diffuse EBL with the desecrate EBL from galaxy counts. The discrete EBL refers to Gardner et al. (2000) at 0.16 and
t al. (2001) at
0.3, 0.45, 0.61, & 0.81 µm and Ashby et al. (2013) at 3.6 and 4.5 µm. Panel (c) compares with the limi
以前から指摘されていた超過は、GALEXで否定されたのだが,ここで復活 ys.
VHE γ-­‐ray limitは全波長域で矛盾せず