ブラックホールと中性子星の 周辺におけるプラズマ物理 當真賢二 (TOMA Kenji) 東北大学学際科学フロンティア研究所 第27回理論懇シンポジウム 「理論天文学・宇宙物理学と境界領域」 2014年12月26日 Outline 1. 偏光:X線・γ線観測のフロンティア – BH時空の検証、強磁場中のQEDの検証 – γ線バーストの放射メカニズム 2. BHジェットの駆動メカニズム:一般相対論と プラズマ物理の境界にある問題 – パルサー風 – Blandford-‐Znajek process 1. 偏光: X線・γ線観測のフロンティア 多くの衛星計画 • GEMS, IXPE, PolariS, PolSTAR • POET, POLAR, SPHiNX, GAP2 • Astro-‐H/SGD • GAP, PoGOLite, Tsubame BH時空の観測的検証 (SchniUman & Krolik 2009) • X線連星の明るい状態 • 標準円盤、散乱>>吸収→直線偏光 (Chandrasekhar 1960) • 一般相対論的効果 (Stark & Connors 1977; Li+2009; SchniUman & Krolik 2009) 偏光角の波長依存性 強磁場中のQEDの検証 • 強磁場中性子星の熱放射 E<~ 真空偏極 eB = 11.6B12 keV me c • ⇒ 基本モードは直線偏光 • 磁場に垂直なモードは散乱されにくい モード変換による偏光角のエネルギー依存 22 Physics of Strongly Magnetized Neutron Stars 強磁場の影響 プラズマ偏極優勢 真空偏極優勢 中性子星 大気 B = 1013 G E = 5 keV (Lai & Ho 2003) ガンマ線バーストの放射機構 BH + accre^on flow バースト 光球放射 相対論的ジェット 内部散逸放射 準熱的(散乱>>吸収) シンクロトロン放射 明るいほど低偏光 揃った磁場なら高偏光 • • • • GAPのγ線偏光観測 (Yonetoku+2011;2012) 明るい3例から高偏光(P>30%; 2σ)を検出 シンクロトロン放射、磁場駆動ジェットを示唆 (KT 2013) Tsubame(東工大)に期待 • バーストの可視偏光は未だ観測できていない Reverse shock 残光 Forward shock variations in source brightness or observing conditions on timescales .1 s owing to the rapid rotation of the polaroid. There is no significant variation in atmospheric transparency or seeing (image point-spread function) over the 588-s exposure. b, Measured time-averaged polarization P of all objects versus measurements in this Letter use this Monte Carlo estimator, although because polarization in GRB 120308A is significantly non-zero, the derived errors (within ,1% absolute error) are comparable to standard error analyses for that object (see Supplementary Information and Extended Data Figs 1, 2, 3, 4, 5, 6). The theoretical maximum degree of linear polarization of synchrotron radiation emitted by electrons in a perfectly homogeneous magnetic field is P < 70%; the difference between the measured and the theoretical maximum can therefore provide further constraints on the physical properties of the emitting source. The measured net polarization can be less than the theoretical maximum because of (1) the dilution of polarized reverse-shock emission by unpolarized forward-shock emission, (2) the combination of ordered magnetic fields from the central 6 Takaki et al. 残光の可視偏光 (Mundell+2013 Nature) P (%) 30 (Takaki, KT, Kawabata+ in prep.) Figure 2 | Evolution of optical polarization and a −9 10 brightness in GRB 120308A. a, b, Evolution of 偏光度 20 10 0 (°) 90 b 偏光角 45 0 c RINGO2 RATCam 16 1.0 17 18 0.1 300 1,000 Mid-time since GRB trigger (s) 時間 1 2 0 | N AT U R E | VO L 5 0 4 | 0 5 D E C E M B E R 2 0 1 3 3,000 r ′ (mag) Flux density (mJy) 光度 polarization degree P (a) and position angle h (b; degrees east of north) for GRB 120308A. −10 10 Individual 0.125-s RINGO2 exposures at the eight Polaroid angles are co-added over a desired time interval into eight images, on which absolute −11 Model 10 aperture photometry is performed and P and h derived. Owing to the low read noise of the system, data from each rotation angle can be −12 10 stacked into temporal bins after data acquisition to optimize signal-to-noise ratio versus time resolution. Here the data were subdivided into four [mag] 16 bins of duration ,84 s and one bin of ,252 s giving roughly equal signal-to-noise ratio. The observed polarization properties are robust to alternative 18 choices of temporal binning (see Supplementary Information and Extended Data Figs 7, 8, 9). Error 20 bars, 61s, as described in Fig. 1b. c, Light curve of GRB 120308A in red (555–690 nm) light using RINGO2 and RATCam. Data have been cross30 calibrated to the SDSS r9 system via five objects in common, with a possible systematic error of up to ,6% between the two instruments due to colour 20 effects. Model fits using one peak (blue solid line) or two peaks (broken grey line for each component; 10 resultant combined light curve in solid grey) are shown with an additional point26 constraining late 0 time behaviour (see Supplementary Information). 2 3 4 The 10 two-peak model is10 statistically slightly10 Time since GRB trigger [s] preferred. Error bars, 61s. Swift XRT Flux [erg cm−2 s−1] [mjy] 1 Optical 0.1 PD [%] B case B case 5 10 6 10 Fig. 4.— Model of the observed X-ray and optical LCs and PD (solid lines). These correspond to the B∥ case and the emission is ass to come from the bright patch in the forward shock (see more details in the text). The PA changes by 90◦ at t ≃ 5.7 × 103 s. The d line represents the B⊥ case, for which the light curves are the same as those in the B∥ case. 広島大かなた望遠鏡による結果 ©2013 Macmillan Publishers Limited. All rights reserved circumburst medium (Kumar & Barniol Duran 2010) and the long-lived reverse shock emission (Uhm et al. 2012) should also be examined, although we leave them as future work. Swift satellite has revealed that many of X-ray afterglows in the early phase decay much shallower than predicted by the standard forward shock model, and the X-ray LC observed at 5 × 102 s ! t ! 7 × 103 s in GRB 111228A corresponds to that phase. The origin of this shallow decay is still under debate (Pennanen et al. 2014; to the optical PA change, may not reproduce the served polarimetric behavior either. The PA chang the early phase optical afterglow would be a new to understanding the origin of the X-ray shallow d phase. Our findings demonstrate that the dense polarim observations in addition to the multi-band LCs are q powerful for constraining the theoretical models of G afterglows. The optical polarizations of blazars also s interesting behaviors (e.g., Marscher et al. 2008; A • 早期の可視残光がP>20% ⇔ 1日後ではP~1-‐3% (Covino+ 2004) • 後期可視残光から円偏光 P_c/P_l ≅ 0.15 (Wiersema, Covino, KT+2013 Nature) 2. BHジェットの駆動機構:一般相対論 とプラズマ物理の境界にある問題 パルサー風 6 ⇠ 10 ? (Kennel & Coroni^ 1984; S.J. Tanaka & Takahara 2010; 2013) 単極誘導 抵抗 ~ B J~ ~ V + 導体円盤 ーー + (Faraday 1832) + ~ = E + 電位差 = ~ ⇥B ~ V Z V Bdl Goldreich & Julian (1969) model • 定常軸対称 • 星は伝導体で物質エネルギー優勢 • 星外は磁場優勢だが粒子で満たされ ⌦s ~ ·B ~ =0 E ~ = E J~ ⇢<0 B' < 0 パルサー風 ⇢>0 ⌦F = ⌦s ~ = E • 星の回転が磁気圏に電位差を作る • 粒子はE×Bドリフトで共回転か磁場に 沿って運動 • 光円柱の存在 ⇒ B_φ ≠ 0 • 星の回転が電流を駆動 ~ · J~ = E ~p B ~ E ~ $⌦F~e' ⇥ B ~ ·S ~= r 光円柱 ~ p) · V ~' (J~ ⇥ B 1 ~ ~' ~ E⇥B S= 4⇡ ~ ⇥B ~ V ~ ⇥ B/B ~ 2 E×Bドリフト ~vd = E Par^cle In Cell Simula^on trophysical Journal Letters, 795:L22 (5pp), 2014 November 1 Jr 6 ρ (b) (c) 4 2 2 0 0 −2 −2 −4 −4 z/R∗ 4 −6 Bφ 6 (a) Chen & Belobor −10 −5 −320 −240 −160 −80 0 5 x/R∗ 0 80 160 10 240 320 −6 0 2 −300 4 −150 6 x/R∗ 0 8 10 150 12 300 (Chen & Bcylinder. eloborodov 2014) 1. Magnetosphere of type I aligned rotator (poloidal cross section) at t = 100. Vertical dashed line shows the light Green curves show the ma + + eρ.-‐ (c) Toroidal component of the magnetic field B . aces. (a) Radial of electric current density Jr . (b) Net charge density • component PIC計算 + 電子の曲率放射と γ→e φ version of this is available in the online journal.) • figure 広い領域でe+e-‐生成が可能とした場合、準定常的な電流回路が形成される ~ • 電流シートに沿った電場がe+e-‐生成 E • 高エネルギー粒子が磁力線を横切る ρp ρe 6 (a) ~ 6= 0 ·B but 6 |⇢| |⇢GJ | ρi (see also Yuki & Shibata (c)2014) (b) 2012; Philippov & Spitkovsky BH jets 活動銀河核 Lj . LEdd ' 1046 M8 ergs = 10 1 100 ガンマ線バーストでは Lj LEdd > 100 中心エンジン • パルサーと異なり、BHには降着流が 付随するが・・・ • ジェットへの質量流入は適度に調節 されているようだ ジェット Lj ⇠ M˙ j c2 BH nGJ ⇠ 10 max 降着円盤 • • • • 2 B3 M8 cm ⇠ 1010 = 10 エネルギー源は何か? 質量源は何か? 加速機構は何か? 収束機構は何か? 3 100 有力視されているシナリオ 低密度 高密度 ジェット 円盤風 • BH上空の低密度領域に エネルギーを注入 • ブラックホール回転エネ ルギーの定常的注入 (Blandford & Znajek 1977) → 電磁場優勢ジェット • 物質源は不明。非定常過 程?中性子注入?(KT & Takahara 2012) • ローレンツ力(磁気圧勾 配、磁気遠心力)による 物質加速 (cf. KT & Takahara 2013 PTEP) • 外側のガス圧で絞る Blandford & Znajek (1977) 無限遠での解 H' = • Kerr時空、定常軸対称場 • 無限小回転BH 2⇡⌦F B r p sin ✓ ⌦H ⌧ 1 • スプリットモノポール場 B rp = const. • Force-‐free近似(電磁場優勢) H' = const. H' = 2⇡(⌦F ⌦F = ⌦H /2 + O(a3 ) ⌦H )B rp sin ✓ 地平面での条件 Force-‐free / MHD simula^ons • • • • • Koide, Shibata, Kudoh (1999-‐) Komissarov, Barkov (1999-‐) Gammie, McKinney, Tchekhovskoy (2003-‐) De Villiers, Hawley, Krolik (2003-‐) See 水田さん、高橋博之さんポスター • Kerr時空は固定 • 初期条件にB_pを設定 • 準定常的なポインティング流速生成 Lj > M˙ acc c2 も可能 • MHD計算では、粒子を注入し続けなけれ ばならない • 負のエネルギー粒子なし(Komissarov 2005) and final (right) distribution of A! . Level surfaces coincide with magnetic field lines, and field line density corresponds to poloidal field ate field lines follow density contours if "0 > 0:2"0; max . (McKinney & Gammie 2004) • 最近では輻射輸送計算が盛ん 非定常シナリオ (Perfrey, Giannios & Beloborodov L63 2015) Black hole jets without large-scale flux L64 K. Parfrey, D. Giannios and A. M. Beloborodov 4 DISCUSSION AND CONCLUSIONS • 反対巻きのB_pループを順に降着させる • BHとdiskが逆回転の場合に活動的 We have argued that small-scale magnetic fields, sourced in an accretion disc where they are amplified by MRI turbulence, can launch powerful relativistic jets when coupled to a rapidly rotating black hole. In this scenario, the existence and transport of large-scale net flux are unnecessary. For prograde discs, there is a minimum poloidal length-scale lcrit below which the magnetic loops can remain closed when connecting the black hole to the disc, preventing jet production. There is no such minimum loop scale for retrograde accretion, allowing these flows to power jets even for lower disc thicknesses (if l ∝ H). Retrograde discs also naturally contain loops with larger flux "l near the disc’s inner edge, and so can produce more powerful jets since ⟨Lj ⟩ ∝ "2l . Prograde discs can, however, create jets via this mechanism provided field loops of sufficient size are present. Several effects are expected to mitigate in favour of prograde jet launching. A coronal • 回転エネルギー → Poyn^ng flux → 軸付近での大規模磁気リコネクションで 熱化 D 時間 Blandford-‐Znajek過程についての論点 • パルサーでは ~ = V ~ ⇥B ~ E ⌦F = ⌦s ~ ·S ~= r ~ · J~ E 1. 至る所で電磁場優勢の状況において、電位 差はどのように生じ、維持されるのか? 2. 電流はどこで駆動され、どう閉じるのか? 3. BH回転エネルギーはどうPoyn^ng流速に転 換するのか?Penrose過程との関係は? Kerr space-‐^me 3.1 The 3+1 decomposition of space–time The space–time metric can be generally written as ds 2 = gµν dx µ dx ν = −α 2 dt 2 + γij (β i dt + dx i )(β j dt + dx j ), (12) • Boyer-‐Lindquist 座標 • 地平面で特異 the shift vector and γ ij the where α is called the lapse function, • β i 空間座標は直交 " >" three-dimensional 1metric 0tensor of the space-like hypersurfaces. • これまでほとんどの解析的 The hypersurfaces are regarded as the研究はこれを使っている absolute space at differ- ent instants of time t (cf. Thorne et al. 1986). For Kerr space– • Kerr-‐Schild 座 標 "0 to the existences of time, ∂t gµν = ∂ϕ gµν = 0. These correspond • 地平面で正則 • 空間座標は直交していない the coordinates (t, ϕ, r, θ), the Killing vector fields ξ µ and χ µ . In • MHD計算に用いられている 0) and χ µ = (0, 1, 0, 0). ξ µ = (1, 0, 0,エルゴ領域 The local fiducial observer (FIDO; Bardeen et al. 1972; Thorne ⇠t2 = gtt = ↵2 + 2 > 0 ε<0粒子を落としてエ et al. 1986), whose world line is perpendicular to the absolute space, ネルギーを取り出す BL > 0 is described by the粒子は必ず coordinated'four-velocity ことが可能 ! " u · ⇠t < 0 がありえる (Penrose過程) i " = 1 −β ng vectors FIDOs 3.1 The 3+1 decomposition of space–time 時空の3+1分解 + space–time metric 3+1written as ( The + )( + can ) be generally ds 2 = gµν dx µ dx ν = −α 2 dt 2 + γij (β i dt + dx i )(β j dt + dx j ), 0 Time-like Killing vector: =0 Time-‐like Killing dxi=0 (12) • t=一定面の法線:fiducial observer shift vector(FIDO) and γ ij the where α is called the lapse function, β i the ✓ ◆ i 1 three-dimensional metric tensor of the space-like µ hypersurfaces. n = , ↵ ↵ The hypersurfaces are regarded as the absolute space at differ) ent instants of time t (cf. Thorne et al. 1986).n For Kerr space– ~ = ( ↵, 0) µ ( + , ) ( + , + ) time, ∂t gµν = ∂ϕ gµν = 0. These correspond to the existences of (t, ϕ, r, θ), the Killing vector fields ξ µ and χ µ . In the coordinates • FIDOは自然な正規直交 0 基底を張る ξ µ = (1, 0, 0, 0) and χ µ = (0, 1, 0, 0). t=一定面 • FIDOは角運動量ゼロ The local fiducial observer (FIDO; Bardeen et al. 1972; Thorne ( , ) (ZAMOともいう) et al. 1986), whose world line is perpendicular to the n ·absolute ⇠' = 0space, is described by the coordinate four-velocity ! " i 1 −β µ ν 3+1 Electrodynamics respectively (see Appendix A for more details). The current J is http://mnras.oxfordjournals.org/ by guest on June 27, 2014 fordjournals.org/ by guest on June 27, 2014 m http://mnras.oxfordjournals.org/ by guest on June 27, 2014 mentum ofabsolute this observer is n · χ of=zero gµνelectric n χ and = magnetic he coordinate angular velocity of the space. The condition constitutive equations: of the absolute space. The condition of zero electric and magnetic the ergosphere (outer thick FIDO is also a for zero angular momentum observer susceptibilities forgeneral general fully ionized plasmas leads to following fully ionized plasmas leads to following H = αsusceptibilities B3.2 − β The × D, 3+1 (18) ) − α/√γϕϕ = 0.2, 0.1, − (14) electrodynamics E = α D + β × B, ( constitutive equations: e et al. 1986).equations: Note that the FIDO frame is not constitutive ij k in the order of increasing r. C F . At infinity, α = 1 and β = 0, where × F denotes e j k anthe beEECBH. used as a convenient orthonormal basis to as The BL coordinates = ααorder B, = DD++ββ× (17) (17) In to×B,study the testHelectromagnetic field inouter Kerrthick space–time, =α B −ρ βare × D, ( (場の古典論; Komissarov 2004) line. The spin p oingularity that E = D and H = B. Here, D, B and the electric = ∞) at the event (g rr (Thorne cal physics al. 1986; Punsly & Coroniti √ et we adopt the 3+1 electrodynamics ofbythe which was deijversion k 2 magnetic field and charge density as measured FIDOs, = 1 + 1 − a . teld, horizon is r C F . At infinity, α = 1 and β = where C × F denotes e µ µ⌫ µ ⇤ µ⌫ H j k H ααBBF−−ββ× D, (18) (18) H= == ×t,⌫ D, E ⇠ , H = F ⇠ , 08). 座標基底に関する電磁場 t,⌫ by (Komissarov see alsoH Landau Lifshitz espectively Appendix A for more details). current is Here, -like in veloped the(see ergosphere, where so2004a, that E =The D and =J B. D, B and ρ1975; arespace. the elec of&the absolute T ij k µ µ⌫ µ ⇤ µ⌫ ~0) asFIDO kj Fk . At(t, –Lindquist (BL) coordinates ϕ, r, θ field )1=and (see infinity, α =α β2= =charge C ×× F or Zfor AMO n (= covariant ↵, C . At infinity, 1 and β0, 0,susceptibilities where C= denotes eijCand dius ofwhere outer boundary the magnetic density measured bygener FID elated tothe the current as measured by FIDOs, j,n⌫as D FFdenotes n , eB = F µand j Freferences k field, The Maxwell Komissarov 2009, therein). ⌫of √ that ==D and Hµν D, D, B and ρ(see are the µ electric 2= = 1E+ 1D− a∗2 coordinate cos θ.B.B.Here, mit) is so rrotate DOs with the angular respectively A for more details). The current J so E and H= Here, Bµνvelocity and ρ Appendix are the electric es that F = 0 and ∇ F = 4πI are reduced to equations: equations ∇ constitutive ν field, magnetic field and charge density as measured by FIDOs, Jptotes = α field, j −theρβ. (19) ν shapes to flat one. The themeasured current asby measured magnetic field and chargerelated densitytoas FIDOs,by FIDOs, j , as phere are shown in Fig. Appendix 1. ϕ respectively (see A for more details). current J is The covariant energy–momentum equation the The electromag−β > 0, (14) B + ∇ × ∇ · B = 0, ∂ E = α D + β (15) × B, ( related to the current as measured by j0, ,ρβ. as J FIDOs, =Eα = j −of t ates have no coordinate singularrelated to the current as measured by FIDOs, j , as etic field ∇ν Tµν = −Fµν I ν gives us the energy equation as =αj− ρβ. (19) the KSJspatial coordinates are no The covariant energy–momentum equation of the electrom $ ! " # J = α j − ρβ. (19) same direction as the BH. The BL coordinates ν ν ppendix A),· and then4πρ, one should =4π −FJ, us = the α energy equation as netic field ∇ 1 1 ∇ ν Tthe µν I givesH B − β × D, µ D = −∂ D + ∇ × H = (16) The covariant energy–momentum equation of electromagt (E · D of + the B · singularity H) + ∇ ν· (grrE= × H at = −E · J, $(20) ! t the own coordinate atial structure electromag" # ∞) The covariant equation of event theaselectromag√ −Fµν I gives energy equation netic field ∇ν Tµν = energy–momentum 8π 4πus the 1 1 √ √ 2 . as+ ∇ ·i where ν ν nates. k × =F−E = 1 + 1 − a dius netic ofwhere horizon is r denotes = −F I gives us the energy equation fieldevent ∇ (E · D + B · H) E e×ijCH · J, ( ∂ $ ! " # the ν T·µC µν t H ∇ and ∇ × C denote (1/ γ )∂ ( γ C ) and ∂ C , rei j k i Poyn^ng fl ux 8π 4π 1 1 where C µ·#F denotes C Fi , andij$the angular momentum equation as √ ! k ∇the ij = k"−E (Espace-like · D+B · H) + · E × H · J,Levi-Civita (20) so ∂ξt spectively, is in ergosphere, where ctor that E =1974)では、 D and H γ )ϵ is the pseudo-tensor 真空解(Wald $ and e # = (1/ # 1 1 i 8π 4π F denotes C·FJ, the angular momentum equation a i , and(20) 12∂> 1 the · Dradius + B · H) + ∇outer · where EC×· H =of −E t 0. (E + β The of boundary the H_φ=0. magnetic No Poyn^ng flux.an field 8πCB) 4π (D × + ∇Ci·Fi , and−(E · m) Dmomentum − (H · m)B $ #√ #field, t where · F· m denotes the angular equation as 1 respectively (see Appen 4π # 1 + 1 1 − a 2 cos2 θ. the4πstationary is agnetic field in Kerrlimit) space–time, $ # i res = ( D × B) · m + ∇ · ∂ t where momentum equation as −(E · m) D − (H · m)B 1 C · F denotes C Fi ,$and 1 the angular 4π 4π cs of the de( Dasymptotes ×which B) ·MacDonald mwas +∇ ∂t 2#version −(E m) D− (H ·shapes m)B space–time to· 4π the(1982) flat The related to the 1 $ # ·one. Thorne & and Thorne et al. (1986) developed thecurrent 3+1 as 4π $ + B · H)m (21) + 1(E ·&DLifshitz ee also Landau 1975; =1−(ρ E + J ×1 B) · m, × B) · m of +are ∇the · shown ∂t 2electrodynamics −(E · m) D − (H · m)B zon and in Fig. 1 . 2the( Dergosphere version without introducing E=or−(ρ H,E and showed $ (E · D + B · H)m + J × B) · m, ( + Maxwell therein). The 4π covariant 4π 1 J = α j − ρβ. 2 D + have Bequations, · H)m = −(ρcan Epaper, +find J ×singularB) energy · m, (21) +of (E the·tothese expressions this such as equations (22) and (29). ild4πI (KS) coordinates noin = are reduced where mµ some =∂ one the den$coordinate ϕ . From 2 1 where 角運動量flux m = ∂ . From these equations, one can find the energy d (13) χν = erver s not sis to roniti (see ity utiliz(14) l equaD field nates × E= y, one event s−atathe 2. lution. where = 0. ϕutilizofequathe mentum 2 θ. Dos field pulsar ×E= hapes y, one at the pulsar case. In terms of the vector potential, on Figure 1. The event horizon (inner thick line) and the outer boundary of (Komissarov one finds the ergosphere (outer thick line) of Kerr space–time.2004a). The thinThus, lines represent Kerr BH 磁気圏 √ ) − α/ γϕϕ = 0.2, 0.1, −0.1, −0.14,r −0.17, −0.2 in theθBL coordinates 1√ −1 ∂γθ ϕϕ (,= 0Bis identical = √ ∂to • 外部電流で作られたB_pがエルゴ領域を貫いている r (, in the order of increasing r. The line B of )=−√α/ the γ γ • 磁気圏プラズマは低密度でcollisionlessであるが、次式を満たしてはいる outer thick line. The spin parameter is set to be a = 0.9. ~ ·B ~ =where D 0 we have defined ( ≡ Aϕ . It is easi of the absolute space. The condition zero electric magnetic whichofmeans that ( isand constant along ea susceptibilities for force general ionized plasmas2859 leads • 重力はローレンツ力に比べて無視できる(地平面ごく近傍を除いて) The condition D · Bto=following 0 and equatio Electromotive infully the BZ process constitutive equations: Taking account of Eϕ = 0, one can write In the steady, axisymmetric state, the angular momentum equaE (21) = αisDreduced + β ×to B, E = −ω × B, ω = %F m. (17) tion ! " ! " Hϕ H ϕ this equation into ∇ × E = ∇· − (25) B p = B i ∂i 電位差パラメータはパルサーの場合と同様に定義される − = −( JSubstituting p × B p ) · m. H = 4π α B − β × D, 4π (18) tains ~p 定常軸対称として S Electromotive force in the BZ process 2859 The energy equation (20) is reduced ij k to CjflF" where C × F denotes e Poyn^ng ux k . i At infinity, α = 1 and β = 0, ! " ! B ∂i %F = 0. H H ϕ ϕ i that E= D=and = FB.theHere, ρ(26) are the electric ∇so · the −%steady, B ∂i H−% Baxisymmetric = −ED, · J pB, and equaIn state, angular momentum F p 4π 4π H < 0each B 'FIDOs, field, magnetic density measured constant by along is, %as tion (21) is reduced tofield and chargeThat F is ! can be"deduced ! equation " A which by (25) together with equations ~ pThe also described by Ei = respectively (seei Appendix for more details). current ~ −%F ∂iJ(,iswhich Hϕ Hϕ B E by(25) the (23) equations imply HϕBisp )generated ∇ · and − (24). · m. B p These =B ∂ = −(that Jp × i − line is equipotential, and %F corresponds related to the current as measured by FIDOs, j , as poloidal4π currents which have4πthe component perpendicular to the ~p propertie J between the field lines. These The energy is reduced to component of the Poyntpoloidal B equation field, and(20) then the poloidal Coroniti θ) (see ocity (14) dinates e event 1 − a2. where y of the cos2 θ. shapes . ngulars are no should romag- where we have defined ( ≡ Aϕ . It is easily of the absolute space. The condition of zero and magnetic which means thatelectric ( is constant along each susceptibilities for general fullyThe ionized plasmas following condition D · leads B = 0toand equation constitutive equations: Taking account of Eϕ = 0, one can write 起電力の起源 E = α D + β × B, E = −ω × B, ω = %F m. (17) Substituting this equation into ∇ × E = 0 H = α B − β × D, (18) 【命題】 の定常状態は維持できない。 ⌦F = 0, H' = tains 0 where C × F denotes eij k CjiFk . At infinity, α = 1 and β = 0, B ∂i %F = 0. (KT & Takahara 2014) B = 0 BL座標で考えると so that E = D' and H = B. Here, D, B and ρ are the electric 2 along field, magnetic field1and charge density as measured by each FIDOs, is constant B fie That is, % F 2 2 ~ ~ ~ ~ E = 0, D(see = Appendix ⇥B Dby = Bcurrent = −% also described E respectively A for more details). The J is m 2 i F ∂i (, which ↵ ↵ line is by equipotential, and %F corresponds to related to the current as measured FIDOs, j , as エルゴ領域において ↵2 < 2 between (KS座標でも同じ結論) These properties a ! D2 the > field B 2 lines. J = α j − ρβ. the pulsar case, discussed in Section(19) 2. B_pを横切って電流が駆動され、 H 6= 0 ' The covariant energy–momentum equation of the electromagν ν T = −F I gives> us0, the E energy equation as netic field ∇ ~ ν µν µ 荷電粒子の流れは電場を弱くする ⌦ = 6 0 F $ ! " # 1 1 (E · D + B · H) + ∇ · E × H = −E · J, (20) ∂t 起電力の起源はエルゴ領域である。地平面は本質的でない。 8π 4π 光円柱 ⌦ p ↵ ~p B >0 '' f =0 ⌦ = ⌦F • 光円柱の位置 f (⌦F , r, ✓) ⌘ (⇠t + ⌦F ⇠' )2 = ↵2 + ⌦)2 = 0 '' (⌦F (BL座標) • 2つの光円柱が存在 • 外側 ⌦F f =0 • 内側 ⌦F ⌦= p ⌦= ↵ '' p ↵ '' 内側の光円柱は必ずエルゴ領域内 にある Downloaded fro e 1. The event horizon (inner thick line) and the outer boundary of gosphere (outer thick line) of Kerr space–time. The thin lines represent √ 粒子はΩ〜Ω_Fの領域(f<0)から両側に流れる α/ γϕϕ = 0.2, 0.1, −0.1, −0.14, −0.17, −0.2 in the BL coordinates √ ⇒ Ω〜Ω_Fの領域に粒子注入が必要 order of increasing r. The line of ) − α/ γϕϕ = 0 is identical to the thick line. The spin parameter is set to be a = 0.9. 赤道面を貫く磁力線 ~ E ~p S • エルゴ領域と外側の光円柱を貫く 磁力線: ⌦F > 0, H' 6= 0 • 電流を駆動するには、どこかで D2 > B2が維持され force-‐free/MHD が破れている必要がある • 赤道面近傍で (B 2 J~p D2 )↵2 = B ✓ B✓ f • f > 0 が必要 K. Toma and F. Takahara • B ≈ DとしてΩ_Fの値が決まるだろう 2862 ⌦F,max /⌦H ~ · J~p < 0 E (KT & Takahara 2014) f (⌦F , r) > 0 エルゴ領域内の赤道面の r まとめ • 偏光:X線・γ線観測のフロンティア – BH時空の検証、強磁場中のQEDの検証 – ガンマ線バーストの放射機構 • BHジェットの駆動機構 – Kerr時空による単極誘導 – 起電力の起源はエルゴ領域 – 電流は赤道面で駆動されうる – 地平面を貫く磁力線についてはforce-‐free/MHD が成立し、Poyn^ng fluxは粒子を介さず地平面か ら直接放射される
© Copyright 2024