X・γ線観測

X線・ガンマ線観測
Short duration GRB
•  Short GRB
•  proposed mission
河合誠之
(東工大 WF-MAXIチーム)
1
“
”
BATSE
Sample
! 
! 
?
?
! 
! 
?
0.01#
1#
1000#
2
Swift
•  2004/10∼
•  ∼100 GRB/year
–  位置精度:数分角(∼数秒)
"数秒角(数分)
•  自身で追跡観測
–  XRT 0.4 ‒10 keV
–  UVOT --- 赤外はなし
BAT
#
Prompt Emission Properties of s-GRBs
- Variable (multiple spikes) within its short duration
- With/without extended emission (E.E.) (Norris & Bonnell 2006)
- No soft short GRBs (Kouveliotou 1993, Sakamoto 2006)
- No spectral lag; 0 ± 20 ms (Norris et al. 2001)
- Low fluence and high Epeak
(Outlier of Epeak-Eiso relation) (Amati 2006)
(D’Avanzo#et#al.#2014)
4
Prompt emission of long and short GRBs
GRB 080916C (long)
GRB 090510 (short)
Abdo et al. 2009, Nature 462, 331
8-260keV
Abdo et al. 2009, Science 323, 1688
0.26-5MeV
LAT all events
>100 MeV
>1GeV
Delay in HE onset: 0.1-0.2 s
Delay in HE onset: ~4-5 s
#
5
Afterglow of short and long GRBs
Short#GRB050724#
Long#GRBs#
Barthelmy#et#al.#2005#
Nousek#et#al.#2006#
XGray#aHerglows#are#similar#to#those#of#long#GRBs#
#
6
Hosts of the first three
well-localized SGRB
GRB 050509B
z = 0.225#
GRB 050709
z = 0.160#
GRB 050724
z = 0.258#
γ
64
30
27
20
#
#
#
γ
10
#
77
8
短いGRBの母銀河と赤方偏移の分布
Optical Afterglows X-ray Afterglows
?
E
Berger et al. 2007; Berger 2009
E
?
SF
SF
E: 楕円銀河(古い星のみ)
F: 星を生成している銀河
Confirmed hosts − E:SF = 2:11
約半数の短いGRBは
z > 0.7
⇒〈age〉≤ 7 Gyr
9
短いGRBの母銀河
星形成率(SFR)と重元素組成比
Berger 2009
Short GRB hosts have lower specific star
formation rates than long GRB hosts; they
trace the general galaxy population
Short GRB hosts have higher
metallicities than long GRB hosts; they
trace the general galaxy population
10
短いGRBの銀河内の位置と環境
Fong, Berger, & Fox 2009
Fong, Berger, & Fox 2009
Short GRBs trace the light distribution of
their host galaxies
11
Lack of Supernova Association
GW workshop @ Titech
12
Short GRBs
Recent Statistics
13
Complete Sample of Swift SGRB
D’Avanzo#et#al.#2014
Swi%&Short&GRBs:#
G##≈10%#of#the#Swi$%GRBs#
G#fainter#than#long#duraRon#GRBs#
G  only#1/3#with#redshiHs#
Criteria:&(~#2013/06#)&
1)  #Av%<#0.5#&#prompt#Swi$GXRT#####36#SGRBs,#15#(42%)#with#
redshiH###
2)  Bright#prompt#(15G150#keV)#emission#(64ms#peak#flux#>#3.5#ph/
cm2/s)#
##16#SGRBs,#11#(69%)#with#redshiH#(0.12#<#z%<#1.30;#“Complete%
sample”)#
Complete Sample of Swift SGRB
D’Avanzo#et#al.#2014
10
P. D’Avanzo et al.
AmaR#et#al.
Yonetoku#et#al.
Complete Sample Aof
Swift
complete
sampleSGRB
of Swift short GRBs
11
D’Avanzo#et#al.#2014
Figure 4. Eiso − Epeak − EX,iso correlation. The power-law best fit is shown as a solid dark line. The shaded region represents the
3σ scatter of the distribution. SGRBs of our complete sample are marked as squares. Two possible LGRBs belonging to our complete
sample (GRB 090426 and GRB 100816A) are also marked.
Eiso normalized X-ray afterglow LCs
Complete Sample
Complete sampleof Swift SGRB
Figure 4. Eiso − Epeak − EX,iso correlation. The power-law best fit is sho
3σ scatter of the distribution. SGRBs of our complete sample are marked as
sample (GRB 090426 and GRB 100816A) are also marked.
Rest frameD’Avanzo#et#al.#2014
X-ray luminosity
normalized to Eiso
Rest frame X-ray luminosity
long (all)
Margutti et al.
2013
short
complete
sample
short (all)
Figure 5. Best fit of the X-ray luminosity light curves of the
SGRBs with redshift of our complete sample normalized to their
Eiso . The X-ray luminosities were computed for each GRB in
the common rest frame 2 − 10 keV energy band following the
precedure described in Sec. 3.2.2. The rest frame times at which
we computed LX − Eiso , LX − Epeak and LX − Liso correlations
The afterglow X-ray luminosity is a good proxy
of Eiso for both long and short GRBs
1sigma scatter for BAT6 long
ison. T
curves
intrins
the aim
promp
(LX −
SGRB
times.
(2012)
at trf
terglow
(Fig. 5
A
lumino
promp
probab
At lat
and th
early t
rather
sample
early t
from t
lying o
what f
qualita
aftergl
ple an
Complete Sample of Swift SGRB
14
P. D’Avanzo et al.
D’Avanzo#et#al.#2014
Redshift distribution
A comp
the surrounding environment with metals (whose X-ray NH
- On the E
is a proxy)
before the collapse
with its stellar wind. AlternaComplete
sample
the same
tively, it has been recently proposed that the Helium in the
LGRBs bu
H II regions where the burst may occur is responsible for the
are GRB 0
observed X-ray absorption in LGRBs (Watson et al. 2013).
with th
Rate of bursts with peak flux P1Under
<P<
P2hypothesis, a high intrinsic X-ray NH , can be -2σThe
these
restinterpreted as the evidence of a dense circumburst medium.
(trf = 5
Something similar can happen for SGRBs, under the conEiso and L
dition that a short time (of the order of Myrs) separates
tions becom
the supernova explosions which gave origin to the compact
respect to
objects in the primordial binary system progenitor and its
increasing
coalescence, with the result that the burst would occur inside
LX − Liso
its host galaxy and near its star forming birthplace (Perna
be indicat
& Belczynski 2002). Such formation channel of “fast mergcentral eng
ing” primordial binaries is in agreement with the observed
consequenc
redshift distribution of our complete sample discussed above.
Indeed,
the time
only case for which combined X-ray and optishort GRB
Formation rate (# of bursts per
unit
cal 8.
afterglow
spectroscopy
could be
performed
for acolumn
genuine
- In light
Distribution
of the intrinsic
X-ray
absorbing
and unit comoving volumeFigure
at
redshift
z)
SGRBs
(GRB
130603B,
which is sample
included
in our
sample),
terglow pr
densities
for the
SGRBs
of the complete
(filled
histogram)
provided
evidence
for
a
progenitor
with
short
delay
time
or
of the LGRB
with z < 1.3 of the BAT6 sample (data taken
SGRB) is
proportional to massiveand star
binary
low nataletkick
(de Ugarte Postigo et al. 2013).
from aCampana
al. 2012).
can be der
formation rate and the delay timeSGRBs
(interval
originated by double compact object systems
due to the
which
experienced
a
large
natal
kick
or
which
are
dynamiprompt em
between
binary
formation
and
merging)
Figure
7. Redshift distribution of our complete sample of
n:#merging#delay#Rme#distribuRon#index
5
CONCLUSIONS
AND
FUTURE
WORKS
cally
formed
in
globular
clusters
are
expected
to
be
associSGRBs. The shaded are takes into account the uncertainties due
- The reds
distribution
ated with a low-density environments. As shown in Table 4,
to the lack of redshift
measurement forfunction:
five bursts in the sama mean va
The statistical study of the rest-frame properties of SGRBs
four SGRBs of the complete sample have only upper limits
ple. Model results for n = −1.5, -1, and -0.5 are shown with the
vironment
gives the best opportunity to characterize the physics of
long-dashed, short-dashed and dotted line, respectively. In comon the intrinsic X-ray NH . Among these, GRB 100625A is
the rest-fra
events,
although
such
studies
often biasedbelow
by thethe
puting the expected redshift distribution for the different model thesethe
only event
whose
upper
limitare
is significantly
the same r
that almost
3/4the
of distribution.
GRBs
are lacking
an=-1.5
secure
redshift
we apply the same photon flux cut, P64 ! 3.5 ph s−1 cm−2 in fact average
NH of
Assuming
that such
limit
Model
with
favored
in acc
We
compute
the
observed
distribution
of
GRBs are
In this
we overcome
this problem
the Swift-BAT 15–150 keV band, used in the definition of our measurement.
is indicative
of a paper,
low-density
circumburst
medium,workwe can
forsample
theof observed
z distribution
tent with
complete sample.
ing with
a carefully
Swift SGRBs having
SGRBs for n = -1.5, -1, -0.5,
delay
timesselected
The linear correlation coefficient of the log Ep – log Lp correlation is 0.958 and the chance probability is 5.31 × 10−9 .
Then, Ghirlanda et al. (2005a, 2005b), Krimm et al. (2009), and
Yonetoku et al. (2010) checked the properties of the correlation
and confirmed its reliability. Using this correlation, Yonetoku
et al. (2004) estimated the redshift for 689 bright BATSE LGRBs
without known redshift and derived the luminosity function and
formation
nal,the
789:65
(5pp),rate.
2014 July 1
As for SGRBs, however, due to the small number of events
with known
redshifts and good spectra to determine Ep , it has
−5 SGRB#EpGLp#relaRon#(Tsutsui#
1.5been
× 10difficult
. Although
this is not as tight
to perform a similar analysis. Recently, Tsutsui
et#al.#2013)#
e toetthe
that
the number
of SGRBs
al. fact
(2013)
succeeded
in determining
the is
Ep –Lp correlation
t isfor
accurate
enough
as SGRBs
a redshift
SGRBs.
They usedto8 use
secure
out of 13 candidates
G##8#SwiH#GRBs#with#redshiH##
obtained
GRBand
events
without
known redshifts.
G#
!
"1.59
etermine the redshifts of SGRBs observed
E
p
#
7.5 × 1050 ergabove.
s−1
,
(2)
Lp = mentioned
Ep –Lp correlation
Then,
100
keV
#
2.1. Data Selection
100
Yonetoku et al.
10−3
0.01
0.1
1
metric estimate of the luminosity function
n rate
redshift
based on spectrum
many again while Lp
the time-integrated
whereversus
Ep is# from
taken
as the luminosity
for 64isms time intervals
red was
with
previous
studies. integrated
This article
at the peak
the the
shorter
duration of SGRB. The linear
In Section
2, considering
we describe
observations
correlation coefficient of the Ep –Lp correlation is 0.98 and the
ter that, we show the redshifts
estimated
on
1 for SGRBs, and obtain the cumulative
nd compare it with the observed one. We
ative luminosity function and the SGRB
nction of redshift with the non-parametric
any assumptions on both distributions.
o discussions and the implications of the
TIONS AND DATA ANALYSES
Yonetoku#et#al.#2014
10
64 msec Peak Luminosity (1052 erg s−1)
SGRB rate from BATSE data using Ep-Lp relation
0.1
1
10
Redshift
Figure 1. Redshift distribution of SGRBs estimated by the Ep –luminosity
correlation by Tsutsui et al. (2013). The solid squares are the known redshift
samples, and the solid circles are those of pseudo-redshifts. The solid line is the
flux limit of 4 × 10−6 erg cm−2 s−1 .
SGRB rate from BATSE data using Ep-Lp relation
Yonetoku#et#al.#2014
Yonetoku et al.
Normalized cumulative distribution N(<z)
1
0.8
0.6
0.4
0.2
Black:#this#work#(gray:#uncertainRes)#
Red:#HETE+SwiH#SGRBs#with#known#z
0
0
00
function) and
0.2
0.4
0.6
0.8
1
1.2
Redshift
Figure 3. Cumulative redshift distribution of SGRBs up to z = 1.14. The black
and the red solid lines are for 45 BATSE SGRBs in this paper and 22 known
1
10−7
10−8
10−10
10−9
10−10
Absolute SGRB Rate (events Mpc−3 yr−1)
10−8
10−9
1000
100
10
Cumulative Number N(>L)
104
Absolute SGRB Rate (events Mpc−3 yr−1)
In Figure 4, we show the cumulative luminosity function
of L/gk (z). The red line is the best estimate with the pseudoredshift, and the gray lines are the results from 100 Monte
Carlo simulations, as previously shown. For LGRBs, several
authorsdata
reportedusing
that the luminosity
function can be described as
SGRB rate from BATSE
Ep-Lp relation
a broken power law (e.g., Yonetoku et al. 2004). However, in this
analysis for SGRBs, we cannot
find an obvious break structure
Yonetoku#et#al.#2014
The Astrophysical Journal, 789:65 (5pp), 2014 July 1
Yonetoku et al.
in Figure 4. We adopted a simple power-law
function and
obtained a best-fit index of −0.84+0.07
−0.09 between the luminosity
51
53SGRB#formaRon#rate#history#
range
10
–10
erg s−1 . We can say that the luminosity function
Luminosity#FuncRon#
is consistent with the pure unbroken power law for L >
1050 erg s−1 .
In Figure 5, we show the SGRB formation rate per comoving
volume and the proper time as a function of (1 + z). Again,
the red line is the best estimate with a pseudo-redshift, and the
gray lines are the results of 100 Monte Carlo simulations. Here,
we used the BATSE’s effective observation period of 4.4 yr as
already explained in Section 2.1. This SGRB rate is calculated
1
1.5
for the events
with peak luminosities
of L > 10250 erg s−1 in the
10
100
1
1.5
2
2.5
3
0.01
0.1
1
10
100
52
−1
observer’s
frame.
The
functional
form
can
be
described
as
Redshift
(1+z)
Redshift
(1+z)
nosity (10 erg s )
64msec Peak Luminosity (10 erg s )
Figure 5. Absolute
of SGRBs estimated from the data distribution
Figure 4. Luminosity function of SGRBs estimated from the data distribution of
!formation rate
6.0±1.7
of
Figure 1. Again,formation
the red line
is the best
estimation
and the 100 gray
lines
Figure
1.
The
red
solid
line
shows
one
of
the
best
estimations,
and
the
100
gray
Figure
5.
Absolute
rate
of
SGRBs
estimated
from
for
(1
+
z)
<
1.67,
(1
+
z)
timated from
the
data
distribution
of
are
those
from
Monte
Carlo
simulations.
The
local
event
rate
at
z
=
0 is
lines are the possible error region estimated by the Monte Carlo simulations. ρSGRB (z) ∝
(5)
−3 yr−1 .
= 6.3+3.1
× the
10−10 events
We can approximately
describe
a simple
power-law function with
for
+ z)
! 1.67,
ofan index
FigureρSGRB
1. (0)Again,
redMpcline
is (1
the
best
estimation an
−3.9const.
e best estimations,
and
theit as100
gray
52
−1
of −1, and no obvious break has been found.
(A color version of this figure is available in the online journal.)
(A color version of this figure is available in the online journal.)
are those from Monte Carlo simulations. The local ev
d by the Monte Carlo simulations.
−3 −10
−3
−1
in=
units
of+3.1
events×
Mpc10
yr−1 . The
local minimum
event
rate .
ρ
(0)
6.3
events
Mpc
yr
e power-law
function
with
an
index
appropriate k value which gives the data distribution SGRB
on the
+3.1
−10
−3
−3.9
at z = 0 is ρSGRB (0) = 6.3−3.9 × 10 events Mpc yr−1 .
(z, L/gk (z)) plane has no correlation between them. Then, we
Here, in this
assumeisthat
the radiation
d.
(Aτ rank
color version
offigure,
this we
figure
available
in ofthetheonline jo
calculated the τ -statistical value (similar to the Kendall
SGRB’s prompt emission is isotropic and we do not include
correlation coefficient) to measure the correlation degree for
any geometrical correction for the jet opening angle. In this
n the online
journal.) data. When the τ value is zero, it means that
the flux-truncated
the combined luminosity L/gk (z) is independent of redshift z
(no luminosity evolution). We estimated k = 3.3+1.7
−3.7 with a
analysis, we treated the SGRB samples with observed fluxes
−1 SGRBs are not
larger than 4 × 10−6 erg cm−2−3
s−1 ; dimmer
included. Therefore, the SGRB formation rate estimated here
in units of events Mpc
yr . The local min
0
ibution of
e 100 gray
mulations.
h an index
on the
hen, we
l τ rank
gree for
ans that
dshift z
with a
minosity
ty funcrmation
10−
1
1.5
2
2.5
Redshift
(1+z) E -L relation
SGRB rate from BATSE data
using
p p
3
Figure 5. Absolute formation rate of SGRBs estimated from the data distribution
Yonetoku#et#al.#2014
of Figure 1. Again, the red line is the best estimation
and the 100 gray lines
are those from Monte Carlo simulations. The local event rate at z = 0 is
−10 events Mpc−3 yr−1 .
ρSGRB (0) = 6.3+3.1
×
10
−3.9
(A color version of this figure is available in the online journal.)
beaming#angle#~#6°#"###
−3
−1 –7#events#Mpc–3#yr–3#
rate#including#offGaxis#events###>#1#x#10
in units of events Mpc yr . The local minimum event rate
−10
−3
−1
at z = 0 is ρSGRB (0) = 6.3+3.1
×
10
events
Mpc
yr
.
−3.9
Here, in this figure, we assume that the radiation of the
GW#event#detecRon#rate#
SGRB’s prompt emission
is isotropic and
we do not include
+7.6
G1####
G  if#SGRB=NSGNS##"#15.6
(#d<#200#Mpc)#
—9.6##GW#events#yr
any geometrical correction
for
the
jet
opening
angle. In this
+300
G1####
G  if#SGRB=NSGBH##"#608
#GW#events#yr
(#d<#680#Mpc)#
—376
analysis, we treated the
SGRB
samples with
observed fluxes
larger than 4 × 10−6 erg cm−2 s−1 ; dimmer SGRBs are not
included. Therefore, the SGRB formation rate estimated here
is regarded as the minimum value.
Let us assume here that the progenitor of SGRBs is the
merging NS–NS binary. Kalogera et al. (2004a, 2004b) obtained the probability function of the rate of a merging
BAT 3rd GRB Catalog
Lien,#Sakamoto#et#al.#in#prep,#
•  778 GRBs (331 with redshifts)
–  717 L-GRBs (92%) (T90≥2s)
–  61 Short GRBs (8%)
•  10 SGRBs with EE
Duration
Number#of#GRBs
SimulaRon#of#GRB#100906A#(z=1.727)
(Lislejohns#et#al.##2013)
T90#[s]
1.###The#instrumental#effect#(sensiRvity#of#the#instrument)#
2.  Energy#dependency#of#the#pulseGwidth#(Fenimore#effect)#
3.  Cosmological#Rme#dilaRon#(1+z#effect)#
Slide by T. Sakamoto; GW workshop @ Tokyo Tech
24
Duration vs. Hardness
Slide by T. Sakamoto; GW workshop @ Tokyo Tech
25
Short GRBs with
Extended
Emission
Slide by T. Sakamoto; GW workshop
@ Tokyo Tech
26
HETE: GRB 050709
Villasenor#et#al.#2005,#Fox#et#al.#2005
HST#image
AHerglow:#XGray#and#opRcal#
Host#galaxy:#lateGtype#spiral#galaxy#
RedshiH#of#HG:#0.16#
No#supernova#associaRon:#>#27.5#mag
Chandra
AHerglow#light#curve
radio
OpRcal
DuraRon:#
###IniRal#peak#(IP)#:#0.2#s#(2G25#keV);##
###EE########################:#130#s#(2G25#keV)#
Prompt#spectrum:##
####IP:#BandGlike#spectrum#(α =#G0.53,#Ep#=#84#keV)#
###EE:#Simple#powerGlaw#(α#=#G2)#
XGray
Slide by T. Sakamoto; GW workshop @ Tokyo Tech
Consistent#with#a#
standard#external#
shock#emission#
#
XGray#flare?#
#
Possible#jet#break:##
~#4.3#deg
27
Swift: GRB 050724
Barthelmy#et#al.#2005,#Berger#2005,#Malesani#et#al.#2005#
VLT#opRcal#image
AHerglow:#XGray,#opRcal#and#radio#
Host#galaxy:#ellipRcal#galaxy#
RedshiH#of#HG:#0.258#
No#supernova#associaRon
DuraRon:#
###IniRal#peak#(IP)#:#0.44#s#(15G150#keV);##
###EE########################:#106#s#(15G150#keV)#
Prompt#spectrum:##
####IP:#Simple#powerGlaw#(α =#G1.38)#
###EE:#Simple#powerGlaw#(α#=#G2.13)#
Lag:#G4.2#(+8.2/G6.6)#ms#
Slide by T. Sakamoto; GW workshop @ Tokyo Tech
Standard#external#shock#
emission#without#a#jet#
break?#
#
XGray#flare#at#T0+41.8#ks#
28
Swift: GRB 060614
Gehrels#et#al.,#Fynbo#et#al,#GalGYam#et#al.,#Della#Valle#et#al.#
G  T90:#102#sec#
G  Variable#iniRal#episode#+#
extended#emission#
Short#GRB#class?#
G#RedshiH#of#0.1254##
G#Typical#long#GRB#host#
G#No#supernova#signature
Slide by T. Sakamoto; GW workshop @ Tokyo Tech
29
Search for S-GRBs E.E. in BATSE GRBs
(Norris#et#al.#2006;#Bostanci#et#al.#2012)#
Bostanci#et#al.#2012
Hardness#RaRo#(50G100#keV#/#100G300#keV)
G  19#SGGRBs#E.E.#candidates#(out#of#296#GRB#samples)#
G  No#significant#spectral#lag#for#iniRal#spike#
IniRal#spike#
E.E.
################################DuraRon#[s]
Slide by T. Sakamoto; GW workshop @ Tokyo Tech
30
S-GRB E.E. in the Swift sample
+GRB#111121A
Slide by T. Sakamoto; GW workshop @ Tokyo Tech
31
Comparison of Spectral Properties
15G150#keV#Energy#Fluence#[erg#cmG2]
Long#vs.#Short#vs.#Short#E.E.
Long#GRB
Long#GRB
Short#GRB
Short#GRB#E.E.#(IniRal)
Short#GRB#E.E.#(E.E.)
Short#GRB#E.E.#
(E.E.)
Short#GRB#
E.E.#(IniRal)
Short#GRB
BAT#RmeGaveraged#photon#index
Slide by T. Sakamoto; GW workshop @ Tokyo Tech
32
Time History of Swift Short GRBs
Short#GRB#
Short#GRB#E.E.
Slide by T. Sakamoto; GW workshop @ Tokyo Tech
33
Possible origin of Extended Emission
•  Onset of the X-ray afterglow
(e.g., Lazzati et al. 2001, Villasenor et al. 2005)
•  The formation of rapidly rotating proto-magnetar
(Metzger et al. 2008, Metzger et al. 2010)
•  Mildly relativistic fireball formed via BlandfordZnajek process
(Nakamura et al. 2014)
34
Chandra Short GRB Fast ToO Program
“Iden8fica8on&of&the&Host&Galaxy&of&Swi%&Short&GRBs&by&
the&Chandra&SubBarcsecond&Posi8on”
T.#Sakamoto,#N.#Gehrels,#E.#Troja,#J.#Norris,#S.#Barthelmy,#J.#Racusin,#N.#Kawai,#A.#Fruchter
Why#XGray?##Why#Chandra?
G  Short#GRBs:#70%#XGray#aHerglow#
detecRon,#whereas,#only#35%#detecRon#
by#opRcal.#
G  SubGarcsecond#localizaRon#accuracy#is#
needed#to#idenRfy#the#host#galaxy.#
Chandra&GO&cycle&13,&14&and&15:&
Trigger&criteria&
• 
• 
Short#GRB#localized#by#SwiH/XRT#
No#opRcal#aHerglow#confirmaRon#
within#5#hr#aHer#the#burst#
Chandra#response#Rme:#
1G3#days
Slide by T. Sakamoto; GW workshop @ Tokyo Tech
35
GRB 111117A: Chandra XA Detection
•  Chandra#ToO#request:#T0#+#6#hr#
•  Chandra#observaRon#start#Rme:#T0#+#3#days
•  No#opRcal#aHerglow#detecRon:#
•  T0#+#2#hr#(GMG;#Zhao#et#al.)#
•  T0#+#7.9#hr#(NOT;#Andersen#et#al.)
3.9#σ detecRon#(wavedetect),#0.35”#(1#σ)
SwiH#short#GRB#XGray#aHerglow
Flux#(0.3G10#keV)#[erg#cmG2#sG1]
afterglow
GRB&111117A
XRT
Consistent#with#other#
SwiH#short#GRBs#
(e.g.,#Fong#et#al.#2012)
Light&curve:&&
##########t#G1.25#(+0.09/G0.12)#
Chandra
11/20/14
Spectrum:&
####Absorbed#powerGlaw#
####Excess#NH:##
####1.8#(+1.1/G1.0)#x#1021#cmG2#
#####Photon#index:#
####2.19#(+0.38/G0.36)
Time#since#the#trigger#Rme#[s]
GW workshop @ Titech
G#No#indicaRon#of#lateG
Rme#break#
G#Dim#XGray#aHerglow
36
GRB 111117A: Optical Afterglow Limit
2.4#m#GaoGMeiGGu#(GMG):#R,#z#
2.56#m#Nordic#OpRcal#Telescope#(NOT):#R,#z#
3.85#m#Telescopio#Nazionale#Galileo#(TNG):#R#
10.4#m#Gran#Telescopio#CANARIAS#(GTC):#g,#r,#i
8#m#Subaru:#K’#
4#m#UKIRT:#K#
3.5#m#CanadaGFrenchGHawaii#Telescope#(CFHT):#J#
T0#+#7.23#h#(TNG):#
####R#>#24.7#mag#
####(#3#σ)
T0#+#7.89#h#(GTC):#
####r#>#25.8#(AB)#mag#
####(#3#σ)
Host
11/20/14
GW workshop @ Titech
Deepest#
opRcal#limit#on#
short#GRBs
37
GRB 111117A: Host Galaxy
Host
Chandra
Offset#between#XA#and#host#center:
#r#=#1.0#±#0.2#arcsec#
####=#8.4#±#1.7#kpc#(z=1.3)#
Photometric#redshiH:#1.31#(+0.46/G0.23)##
Star#forming#galaxy:# τ = 0.1#Gyr#and#1#x#109#MSUN
(c.f.,#long#GRB#hosts:#0.06#Gyr#and##1#x#109#MSUN#
Leibler#&#Berger#2010)
Minimum#kick#velocity:#
##v#=#r#/#τ =#80#km#sG1
(c.f.,#similar#to#or#larger#than#
GRB#060502B;#Bloom#et#al.#
2007)
Slide by T. Sakamoto; GW workshop @ Tokyo Tech
38
Future Prospect on S-GRBs
•  Increase golden s-GRB samples
–  Secure redshift (redshift from an afterglow)
–  Sub-arcsec location of afterglow
–  Spectroscopy of s-GRB hosts
(careful investigation of E.E. emission)
•  Coincidence with GW triggers
–  Advance LIGO/Virgo, KAGURA era is coming
•  Importance of rapid/deep/long-term IR
follow-up
–  Don t miss Kilonova emission
GW workshop @ Titech
39
GRB観測の決定的要因
•  正確かつ迅速な位置決定
•  多波長、特に可視・近赤外の追観測
–  速報+観測開始の仕組み
•  GCN : インターネット上のGRB連絡網
•  HETE VHF: 衛星"地上への速報
•  Swift: 望遠鏡を発見衛星自体が搭載
•  将来
–  Swiftのような多波長衛星は難しい $
–  発見#追観測 衛星への司令がいつでも
•  ORBCOMM等、衛星電話メッセージの活用など
40
MAXI GRBs and transients (2̶20 keV)
: only MAXI
: MAXI + other
Serino#et#al.#(2014)
hsp://maxi.riken.jp/grbs/
41
Transient Rate [events /15month]
LogN-LogS 分布
∼7 cts cm-2
-3/2
MAXI
transients
(戸泉D論発表スライド)
Swift GRBによく合う
べき -3/2
によく合う
Swift GRBs
LogN-LogS 分布で2成分を検出
・Swift GRBに非常によく合う成分: GRB
・ べき -3/2の成分: GRBの残光、星のフレア、AGN
潮汐破壊、Shock
Fluence [cts cm-2]breakout
42
Currently#operaRng#transient#missions
Swi%/BAT&(P,L,S)
INTEGRAL/IBIS&(P,L,S),&SPIBACS&(L)
MAXI/GSC&(P,L,S)
Fermi/GBM,&LAT&(P,L,S)&
KonusBWind&(L,S)&
AGILE/Super&AGILE&(P,L,S)
Suzaku/WAM&(L,S)&
P:#posiRon,#L:#lightcurve,#S:#spectrum##
Proposed#transient#missions
Lobster/ISSGLobster
UFFO#Pathfinder
Janus
EXIST
SVOM
LOFT
2015–
CALET
WFGMAXI
2018(20)–
AstroGH/SGD#shield
AGSTAR
HiGZ#GUNDAM
44
“WideBField&MAXI”&on&ISS&
N.#Kawai#+#WFGMAXI#Team
DirecRon##
of#MoRon#
MAXI#
科学目的
監視天域
観測装置
感度
位置決定精度
JEM#EF#
X線突発天体の検知と速報
重力波対応天体の発見、ブラックホール等X線連星、GRBs …
常時全天の20% (92分で全天の 80% をカバー)
軟X線大立体角カメラ (SLC: 0.7‒10 keV)
硬X線モニター (HXM: 20 keV‒1 MeV)
50 mCrab /30 s (SLC)
0.1
プラットフォーム ISS/JEM (Selection in 2014, operation 2018‒)
45#
WF-MAXIの科学目的と特徴
X線突発天体の検出・位置速報
•  短いGRB(重力波源候補)をはじめとする短時間X
線トランジェントの検出、位置決定、速報
•  MAXI の使命の継承
•  世界初の本格的軟X線大天域モニター
"新種/稀少 天体現象
•  最高優先度で実施されている大型プロジェクト(KAGRA,
ASTRO-H)をサポート
•  開発済み技術とISS搭載機会を活用して速く安く開発・配備
"次世代重力波望遠鏡の本格始動時(2018 20)に運用
•  「X線天文学」に閉じず、多波長+非光子天文学・基礎物理
学の広いコミュニティに貢献
46
-‐‑‒
7-‐‑‒ (
X
X
)
SH
O
SH
A
B
G
R:8RT
2
通報
24
53
通報
-‐‑‒
0
-‐‑‒
01
-‐‑‒
0 4
短時間トランジェント現象
Tidal#disrupRon#
Supernova#/GRB#
shock#breakout#
Supergiant#fast#
XGray#transient#
Merging#neutron#
star#binary#
48
設計を開始した場合に,打ち上げは ) (/ 年 / 月である.実際の基本設計
開始はこれよりも確実に(1年以上)遅れることを考えると,この制約
WF-MAXI
条件を満たすことは全く保証されない.第3の目的は付加的なものであ
る.第4の目的については LB C9D1 との比較検討が必要である.
このミッションを実施するのであれば,その規模(リスク経費を含まず
•  ISAS H25年度小規模プロジェクト公募に提案 " 不採択
)
に約
億の見積もり)から考えて, 1G1 のミッションとして実施するこ
–  (予算 全小規模プロジェクト合計で年間10億円以下)
とが適切である.
エキストラサクセスとされている最大の目的が達成されれば,その科学
的な価値は高い.しかし,天空をカバーする領域 )
と稼働率 ,
を
考慮すると重力波の対応天体を発見する確率はあまり高くなく,リスク
は大きい.地上の観測網のみでフォローアップする場合との費用対効果
をよく検討すべきである.
高エネルギー宇宙物理のコミュニティは将来計画の策定作業中であり,
位置づけは不明である.一方,重力波天体は宇宙線分野の最重要な研究
対象の一つと認識されていることから,対応天体の検出確率を高めて,
宇宙線分野のミッションとして再定義することを検討するほうがよいか
もしれない.
,
評価委員会は,コスト(リスク経費を含めると , 億と予想)に対して,
サイエンスのアウトプットは十分ではないと判断し,提案チームに対し
てコスト削減の検討を依頼した.その結果,コストを下げると,エキス
トラサクセスを達成する確率が更に小さくなることが明らかになった.
-
以降 (
(
まで
, までの
4B 的視点での審査により,不
と判断したため,
49
「突発天体観測が担う重要課題」のうち、以下をカバーす
る。
①  重力波放出源としての突発天体監視
–  2018年頃に本格稼働する重力波望遠鏡でとらえた現象の対応
天体を捉え、位置を世界へ通報する。
–  対応天体の広帯域(特に低エネルギー領域)スペクトルを取得し、
従来のガンマ線バースト観測にも対応する。
②  全天モニターの軟X線領域への拡大
–  多波長・非光子観測との連携
MAXIで開拓した軟X線での新しいサイエンス(星の巨大フレア、
新星(白色矮星)爆発の点火、など)を広げるとともに、従来の銀河
系内連星系(BH,NS,白色矮星)の検出・モニターも行う。発見
は迅速に世界へ通報し、X線(ASTROH)を含む多波長での観測を
促す。
50
① 
② 
③ 
④ 
#
X
CCD
(SLC)
(ISS)
(HXM)
ISS
#
#
#
X
#
X
#
#
% 
% 
% 
51
2013
)
#
====#
! 
(iSEEP)
ISS
) #
(
====#
(
#
!  2013
)
selecRon
5
(
(
2013
! 
B
#
=====#
:#
:#
)
60%
) #
(WFGMAXI
)
#
(MAXI
WFGMAXI
WFGMAXI
#
#
====#
#
#
52
(ISS)
% 
#
& 
0.1°
(
& 
& 
& 
(
(
% 
&  MAXI/SSC,#ASTROH/SXI(CCD
#
% MAXI
&  MAXI
) #
##
70%)
)
#
),#HETE2/WFM,#
#
#
MAXI
% 
)
#
(MAXI
ISS
#
53
#
59cm
WFGMAXI#
ISS
& 
&  2
& 
& 
& 
&  IF
& 
(
(
200kg
(2
400W
(2
)#
Ethernet#
20
(
)#
WFGMAXI
2
)
)#
1
)#
#
54
WF-MAXIと中型バス
SLC1
HXM
(
(
)
WFGMAXI
)#
4
H26
1
#2015 2 27
#
(
)
#
55
X線トランジェント
52
–1
0
1
Log#luminosity#(erg/s)
50
2
4
5
6
7
Long GRB
Low
luminosity
GRB
WFG
MAXI
MAXI
Short
GRB
48
46
44
42
M
A
X
I
SN shock
breakout
40
38
3
log#seconds
X-ray Burst
–6
–5
–4
–3
Tidal Disruption
Nova shock
breakout
–2
–1
BH Binary
0
1
2
60
log#days