X線・ガンマ線観測 Short duration GRB • Short GRB • proposed mission 河合誠之 (東工大 WF-MAXIチーム) 1 “ ” BATSE Sample ! ! ? ? ! ! ? 0.01# 1# 1000# 2 Swift • 2004/10∼ • ∼100 GRB/year – 位置精度:数分角(∼数秒) "数秒角(数分) • 自身で追跡観測 – XRT 0.4 ‒10 keV – UVOT --- 赤外はなし BAT # Prompt Emission Properties of s-GRBs - Variable (multiple spikes) within its short duration - With/without extended emission (E.E.) (Norris & Bonnell 2006) - No soft short GRBs (Kouveliotou 1993, Sakamoto 2006) - No spectral lag; 0 ± 20 ms (Norris et al. 2001) - Low fluence and high Epeak (Outlier of Epeak-Eiso relation) (Amati 2006) (D’Avanzo#et#al.#2014) 4 Prompt emission of long and short GRBs GRB 080916C (long) GRB 090510 (short) Abdo et al. 2009, Nature 462, 331 8-260keV Abdo et al. 2009, Science 323, 1688 0.26-5MeV LAT all events >100 MeV >1GeV Delay in HE onset: 0.1-0.2 s Delay in HE onset: ~4-5 s # 5 Afterglow of short and long GRBs Short#GRB050724# Long#GRBs# Barthelmy#et#al.#2005# Nousek#et#al.#2006# XGray#aHerglows#are#similar#to#those#of#long#GRBs# # 6 Hosts of the first three well-localized SGRB GRB 050509B z = 0.225# GRB 050709 z = 0.160# GRB 050724 z = 0.258# γ 64 30 27 20 # # # γ 10 # 77 8 短いGRBの母銀河と赤方偏移の分布 Optical Afterglows X-ray Afterglows ? E Berger et al. 2007; Berger 2009 E ? SF SF E: 楕円銀河(古い星のみ) F: 星を生成している銀河 Confirmed hosts − E:SF = 2:11 約半数の短いGRBは z > 0.7 ⇒〈age〉≤ 7 Gyr 9 短いGRBの母銀河 星形成率(SFR)と重元素組成比 Berger 2009 Short GRB hosts have lower specific star formation rates than long GRB hosts; they trace the general galaxy population Short GRB hosts have higher metallicities than long GRB hosts; they trace the general galaxy population 10 短いGRBの銀河内の位置と環境 Fong, Berger, & Fox 2009 Fong, Berger, & Fox 2009 Short GRBs trace the light distribution of their host galaxies 11 Lack of Supernova Association GW workshop @ Titech 12 Short GRBs Recent Statistics 13 Complete Sample of Swift SGRB D’Avanzo#et#al.#2014 Swi%&Short&GRBs:# G##≈10%#of#the#Swi$%GRBs# G#fainter#than#long#duraRon#GRBs# G only#1/3#with#redshiHs# Criteria:&(~#2013/06#)& 1) #Av%<#0.5#&#prompt#Swi$GXRT#####36#SGRBs,#15#(42%)#with# redshiH### 2) Bright#prompt#(15G150#keV)#emission#(64ms#peak#flux#>#3.5#ph/ cm2/s)# ##16#SGRBs,#11#(69%)#with#redshiH#(0.12#<#z%<#1.30;#“Complete% sample”)# Complete Sample of Swift SGRB D’Avanzo#et#al.#2014 10 P. D’Avanzo et al. AmaR#et#al. Yonetoku#et#al. Complete Sample Aof Swift complete sampleSGRB of Swift short GRBs 11 D’Avanzo#et#al.#2014 Figure 4. Eiso − Epeak − EX,iso correlation. The power-law best fit is shown as a solid dark line. The shaded region represents the 3σ scatter of the distribution. SGRBs of our complete sample are marked as squares. Two possible LGRBs belonging to our complete sample (GRB 090426 and GRB 100816A) are also marked. Eiso normalized X-ray afterglow LCs Complete Sample Complete sampleof Swift SGRB Figure 4. Eiso − Epeak − EX,iso correlation. The power-law best fit is sho 3σ scatter of the distribution. SGRBs of our complete sample are marked as sample (GRB 090426 and GRB 100816A) are also marked. Rest frameD’Avanzo#et#al.#2014 X-ray luminosity normalized to Eiso Rest frame X-ray luminosity long (all) Margutti et al. 2013 short complete sample short (all) Figure 5. Best fit of the X-ray luminosity light curves of the SGRBs with redshift of our complete sample normalized to their Eiso . The X-ray luminosities were computed for each GRB in the common rest frame 2 − 10 keV energy band following the precedure described in Sec. 3.2.2. The rest frame times at which we computed LX − Eiso , LX − Epeak and LX − Liso correlations The afterglow X-ray luminosity is a good proxy of Eiso for both long and short GRBs 1sigma scatter for BAT6 long ison. T curves intrins the aim promp (LX − SGRB times. (2012) at trf terglow (Fig. 5 A lumino promp probab At lat and th early t rather sample early t from t lying o what f qualita aftergl ple an Complete Sample of Swift SGRB 14 P. D’Avanzo et al. D’Avanzo#et#al.#2014 Redshift distribution A comp the surrounding environment with metals (whose X-ray NH - On the E is a proxy) before the collapse with its stellar wind. AlternaComplete sample the same tively, it has been recently proposed that the Helium in the LGRBs bu H II regions where the burst may occur is responsible for the are GRB 0 observed X-ray absorption in LGRBs (Watson et al. 2013). with th Rate of bursts with peak flux P1Under <P< P2hypothesis, a high intrinsic X-ray NH , can be -2σThe these restinterpreted as the evidence of a dense circumburst medium. (trf = 5 Something similar can happen for SGRBs, under the conEiso and L dition that a short time (of the order of Myrs) separates tions becom the supernova explosions which gave origin to the compact respect to objects in the primordial binary system progenitor and its increasing coalescence, with the result that the burst would occur inside LX − Liso its host galaxy and near its star forming birthplace (Perna be indicat & Belczynski 2002). Such formation channel of “fast mergcentral eng ing” primordial binaries is in agreement with the observed consequenc redshift distribution of our complete sample discussed above. Indeed, the time only case for which combined X-ray and optishort GRB Formation rate (# of bursts per unit cal 8. afterglow spectroscopy could be performed for acolumn genuine - In light Distribution of the intrinsic X-ray absorbing and unit comoving volumeFigure at redshift z) SGRBs (GRB 130603B, which is sample included in our sample), terglow pr densities for the SGRBs of the complete (filled histogram) provided evidence for a progenitor with short delay time or of the LGRB with z < 1.3 of the BAT6 sample (data taken SGRB) is proportional to massiveand star binary low nataletkick (de Ugarte Postigo et al. 2013). from aCampana al. 2012). can be der formation rate and the delay timeSGRBs (interval originated by double compact object systems due to the which experienced a large natal kick or which are dynamiprompt em between binary formation and merging) Figure 7. Redshift distribution of our complete sample of n:#merging#delay#Rme#distribuRon#index 5 CONCLUSIONS AND FUTURE WORKS cally formed in globular clusters are expected to be associSGRBs. The shaded are takes into account the uncertainties due - The reds distribution ated with a low-density environments. As shown in Table 4, to the lack of redshift measurement forfunction: five bursts in the sama mean va The statistical study of the rest-frame properties of SGRBs four SGRBs of the complete sample have only upper limits ple. Model results for n = −1.5, -1, and -0.5 are shown with the vironment gives the best opportunity to characterize the physics of long-dashed, short-dashed and dotted line, respectively. In comon the intrinsic X-ray NH . Among these, GRB 100625A is the rest-fra events, although such studies often biasedbelow by thethe puting the expected redshift distribution for the different model thesethe only event whose upper limitare is significantly the same r that almost 3/4the of distribution. GRBs are lacking an=-1.5 secure redshift we apply the same photon flux cut, P64 ! 3.5 ph s−1 cm−2 in fact average NH of Assuming that such limit Model with favored in acc We compute the observed distribution of GRBs are In this we overcome this problem the Swift-BAT 15–150 keV band, used in the definition of our measurement. is indicative of a paper, low-density circumburst medium,workwe can forsample theof observed z distribution tent with complete sample. ing with a carefully Swift SGRBs having SGRBs for n = -1.5, -1, -0.5, delay timesselected The linear correlation coefficient of the log Ep – log Lp correlation is 0.958 and the chance probability is 5.31 × 10−9 . Then, Ghirlanda et al. (2005a, 2005b), Krimm et al. (2009), and Yonetoku et al. (2010) checked the properties of the correlation and confirmed its reliability. Using this correlation, Yonetoku et al. (2004) estimated the redshift for 689 bright BATSE LGRBs without known redshift and derived the luminosity function and formation nal,the 789:65 (5pp),rate. 2014 July 1 As for SGRBs, however, due to the small number of events with known redshifts and good spectra to determine Ep , it has −5 SGRB#EpGLp#relaRon#(Tsutsui# 1.5been × 10difficult . Although this is not as tight to perform a similar analysis. Recently, Tsutsui et#al.#2013)# e toetthe that the number of SGRBs al. fact (2013) succeeded in determining the is Ep –Lp correlation t isfor accurate enough as SGRBs a redshift SGRBs. They usedto8 use secure out of 13 candidates G##8#SwiH#GRBs#with#redshiH## obtained GRBand events without known redshifts. G# ! "1.59 etermine the redshifts of SGRBs observed E p # 7.5 × 1050 ergabove. s−1 , (2) Lp = mentioned Ep –Lp correlation Then, 100 keV # 2.1. Data Selection 100 Yonetoku et al. 10−3 0.01 0.1 1 metric estimate of the luminosity function n rate redshift based on spectrum many again while Lp the time-integrated whereversus Ep is# from taken as the luminosity for 64isms time intervals red was with previous studies. integrated This article at the peak the the shorter duration of SGRB. The linear In Section 2, considering we describe observations correlation coefficient of the Ep –Lp correlation is 0.98 and the ter that, we show the redshifts estimated on 1 for SGRBs, and obtain the cumulative nd compare it with the observed one. We ative luminosity function and the SGRB nction of redshift with the non-parametric any assumptions on both distributions. o discussions and the implications of the TIONS AND DATA ANALYSES Yonetoku#et#al.#2014 10 64 msec Peak Luminosity (1052 erg s−1) SGRB rate from BATSE data using Ep-Lp relation 0.1 1 10 Redshift Figure 1. Redshift distribution of SGRBs estimated by the Ep –luminosity correlation by Tsutsui et al. (2013). The solid squares are the known redshift samples, and the solid circles are those of pseudo-redshifts. The solid line is the flux limit of 4 × 10−6 erg cm−2 s−1 . SGRB rate from BATSE data using Ep-Lp relation Yonetoku#et#al.#2014 Yonetoku et al. Normalized cumulative distribution N(<z) 1 0.8 0.6 0.4 0.2 Black:#this#work#(gray:#uncertainRes)# Red:#HETE+SwiH#SGRBs#with#known#z 0 0 00 function) and 0.2 0.4 0.6 0.8 1 1.2 Redshift Figure 3. Cumulative redshift distribution of SGRBs up to z = 1.14. The black and the red solid lines are for 45 BATSE SGRBs in this paper and 22 known 1 10−7 10−8 10−10 10−9 10−10 Absolute SGRB Rate (events Mpc−3 yr−1) 10−8 10−9 1000 100 10 Cumulative Number N(>L) 104 Absolute SGRB Rate (events Mpc−3 yr−1) In Figure 4, we show the cumulative luminosity function of L/gk (z). The red line is the best estimate with the pseudoredshift, and the gray lines are the results from 100 Monte Carlo simulations, as previously shown. For LGRBs, several authorsdata reportedusing that the luminosity function can be described as SGRB rate from BATSE Ep-Lp relation a broken power law (e.g., Yonetoku et al. 2004). However, in this analysis for SGRBs, we cannot find an obvious break structure Yonetoku#et#al.#2014 The Astrophysical Journal, 789:65 (5pp), 2014 July 1 Yonetoku et al. in Figure 4. We adopted a simple power-law function and obtained a best-fit index of −0.84+0.07 −0.09 between the luminosity 51 53SGRB#formaRon#rate#history# range 10 –10 erg s−1 . We can say that the luminosity function Luminosity#FuncRon# is consistent with the pure unbroken power law for L > 1050 erg s−1 . In Figure 5, we show the SGRB formation rate per comoving volume and the proper time as a function of (1 + z). Again, the red line is the best estimate with a pseudo-redshift, and the gray lines are the results of 100 Monte Carlo simulations. Here, we used the BATSE’s effective observation period of 4.4 yr as already explained in Section 2.1. This SGRB rate is calculated 1 1.5 for the events with peak luminosities of L > 10250 erg s−1 in the 10 100 1 1.5 2 2.5 3 0.01 0.1 1 10 100 52 −1 observer’s frame. The functional form can be described as Redshift (1+z) Redshift (1+z) nosity (10 erg s ) 64msec Peak Luminosity (10 erg s ) Figure 5. Absolute of SGRBs estimated from the data distribution Figure 4. Luminosity function of SGRBs estimated from the data distribution of !formation rate 6.0±1.7 of Figure 1. Again,formation the red line is the best estimation and the 100 gray lines Figure 1. The red solid line shows one of the best estimations, and the 100 gray Figure 5. Absolute rate of SGRBs estimated from for (1 + z) < 1.67, (1 + z) timated from the data distribution of are those from Monte Carlo simulations. The local event rate at z = 0 is lines are the possible error region estimated by the Monte Carlo simulations. ρSGRB (z) ∝ (5) −3 yr−1 . = 6.3+3.1 × the 10−10 events We can approximately describe a simple power-law function with for + z) ! 1.67, ofan index FigureρSGRB 1. (0)Again, redMpcline is (1 the best estimation an −3.9const. e best estimations, and theit as100 gray 52 −1 of −1, and no obvious break has been found. (A color version of this figure is available in the online journal.) (A color version of this figure is available in the online journal.) are those from Monte Carlo simulations. The local ev d by the Monte Carlo simulations. −3 −10 −3 −1 in= units of+3.1 events× Mpc10 yr−1 . The local minimum event rate . ρ (0) 6.3 events Mpc yr e power-law function with an index appropriate k value which gives the data distribution SGRB on the +3.1 −10 −3 −3.9 at z = 0 is ρSGRB (0) = 6.3−3.9 × 10 events Mpc yr−1 . (z, L/gk (z)) plane has no correlation between them. Then, we Here, in this assumeisthat the radiation d. (Aτ rank color version offigure, this we figure available in ofthetheonline jo calculated the τ -statistical value (similar to the Kendall SGRB’s prompt emission is isotropic and we do not include correlation coefficient) to measure the correlation degree for any geometrical correction for the jet opening angle. In this n the online journal.) data. When the τ value is zero, it means that the flux-truncated the combined luminosity L/gk (z) is independent of redshift z (no luminosity evolution). We estimated k = 3.3+1.7 −3.7 with a analysis, we treated the SGRB samples with observed fluxes −1 SGRBs are not larger than 4 × 10−6 erg cm−2−3 s−1 ; dimmer included. Therefore, the SGRB formation rate estimated here in units of events Mpc yr . The local min 0 ibution of e 100 gray mulations. h an index on the hen, we l τ rank gree for ans that dshift z with a minosity ty funcrmation 10− 1 1.5 2 2.5 Redshift (1+z) E -L relation SGRB rate from BATSE data using p p 3 Figure 5. Absolute formation rate of SGRBs estimated from the data distribution Yonetoku#et#al.#2014 of Figure 1. Again, the red line is the best estimation and the 100 gray lines are those from Monte Carlo simulations. The local event rate at z = 0 is −10 events Mpc−3 yr−1 . ρSGRB (0) = 6.3+3.1 × 10 −3.9 (A color version of this figure is available in the online journal.) beaming#angle#~#6°#"### −3 −1 –7#events#Mpc–3#yr–3# rate#including#offGaxis#events###>#1#x#10 in units of events Mpc yr . The local minimum event rate −10 −3 −1 at z = 0 is ρSGRB (0) = 6.3+3.1 × 10 events Mpc yr . −3.9 Here, in this figure, we assume that the radiation of the GW#event#detecRon#rate# SGRB’s prompt emission is isotropic and we do not include +7.6 G1#### G if#SGRB=NSGNS##"#15.6 (#d<#200#Mpc)# —9.6##GW#events#yr any geometrical correction for the jet opening angle. In this +300 G1#### G if#SGRB=NSGBH##"#608 #GW#events#yr (#d<#680#Mpc)# —376 analysis, we treated the SGRB samples with observed fluxes larger than 4 × 10−6 erg cm−2 s−1 ; dimmer SGRBs are not included. Therefore, the SGRB formation rate estimated here is regarded as the minimum value. Let us assume here that the progenitor of SGRBs is the merging NS–NS binary. Kalogera et al. (2004a, 2004b) obtained the probability function of the rate of a merging BAT 3rd GRB Catalog Lien,#Sakamoto#et#al.#in#prep,# • 778 GRBs (331 with redshifts) – 717 L-GRBs (92%) (T90≥2s) – 61 Short GRBs (8%) • 10 SGRBs with EE Duration Number#of#GRBs SimulaRon#of#GRB#100906A#(z=1.727) (Lislejohns#et#al.##2013) T90#[s] 1.###The#instrumental#effect#(sensiRvity#of#the#instrument)# 2. Energy#dependency#of#the#pulseGwidth#(Fenimore#effect)# 3. Cosmological#Rme#dilaRon#(1+z#effect)# Slide by T. Sakamoto; GW workshop @ Tokyo Tech 24 Duration vs. Hardness Slide by T. Sakamoto; GW workshop @ Tokyo Tech 25 Short GRBs with Extended Emission Slide by T. Sakamoto; GW workshop @ Tokyo Tech 26 HETE: GRB 050709 Villasenor#et#al.#2005,#Fox#et#al.#2005 HST#image AHerglow:#XGray#and#opRcal# Host#galaxy:#lateGtype#spiral#galaxy# RedshiH#of#HG:#0.16# No#supernova#associaRon:#>#27.5#mag Chandra AHerglow#light#curve radio OpRcal DuraRon:# ###IniRal#peak#(IP)#:#0.2#s#(2G25#keV);## ###EE########################:#130#s#(2G25#keV)# Prompt#spectrum:## ####IP:#BandGlike#spectrum#(α =#G0.53,#Ep#=#84#keV)# ###EE:#Simple#powerGlaw#(α#=#G2)# XGray Slide by T. Sakamoto; GW workshop @ Tokyo Tech Consistent#with#a# standard#external# shock#emission# # XGray#flare?# # Possible#jet#break:## ~#4.3#deg 27 Swift: GRB 050724 Barthelmy#et#al.#2005,#Berger#2005,#Malesani#et#al.#2005# VLT#opRcal#image AHerglow:#XGray,#opRcal#and#radio# Host#galaxy:#ellipRcal#galaxy# RedshiH#of#HG:#0.258# No#supernova#associaRon DuraRon:# ###IniRal#peak#(IP)#:#0.44#s#(15G150#keV);## ###EE########################:#106#s#(15G150#keV)# Prompt#spectrum:## ####IP:#Simple#powerGlaw#(α =#G1.38)# ###EE:#Simple#powerGlaw#(α#=#G2.13)# Lag:#G4.2#(+8.2/G6.6)#ms# Slide by T. Sakamoto; GW workshop @ Tokyo Tech Standard#external#shock# emission#without#a#jet# break?# # XGray#flare#at#T0+41.8#ks# 28 Swift: GRB 060614 Gehrels#et#al.,#Fynbo#et#al,#GalGYam#et#al.,#Della#Valle#et#al.# G T90:#102#sec# G Variable#iniRal#episode#+# extended#emission# Short#GRB#class?# G#RedshiH#of#0.1254## G#Typical#long#GRB#host# G#No#supernova#signature Slide by T. Sakamoto; GW workshop @ Tokyo Tech 29 Search for S-GRBs E.E. in BATSE GRBs (Norris#et#al.#2006;#Bostanci#et#al.#2012)# Bostanci#et#al.#2012 Hardness#RaRo#(50G100#keV#/#100G300#keV) G 19#SGGRBs#E.E.#candidates#(out#of#296#GRB#samples)# G No#significant#spectral#lag#for#iniRal#spike# IniRal#spike# E.E. ################################DuraRon#[s] Slide by T. Sakamoto; GW workshop @ Tokyo Tech 30 S-GRB E.E. in the Swift sample +GRB#111121A Slide by T. Sakamoto; GW workshop @ Tokyo Tech 31 Comparison of Spectral Properties 15G150#keV#Energy#Fluence#[erg#cmG2] Long#vs.#Short#vs.#Short#E.E. Long#GRB Long#GRB Short#GRB Short#GRB#E.E.#(IniRal) Short#GRB#E.E.#(E.E.) Short#GRB#E.E.# (E.E.) Short#GRB# E.E.#(IniRal) Short#GRB BAT#RmeGaveraged#photon#index Slide by T. Sakamoto; GW workshop @ Tokyo Tech 32 Time History of Swift Short GRBs Short#GRB# Short#GRB#E.E. Slide by T. Sakamoto; GW workshop @ Tokyo Tech 33 Possible origin of Extended Emission • Onset of the X-ray afterglow (e.g., Lazzati et al. 2001, Villasenor et al. 2005) • The formation of rapidly rotating proto-magnetar (Metzger et al. 2008, Metzger et al. 2010) • Mildly relativistic fireball formed via BlandfordZnajek process (Nakamura et al. 2014) 34 Chandra Short GRB Fast ToO Program “Iden8fica8on&of&the&Host&Galaxy&of&Swi%&Short&GRBs&by& the&Chandra&SubBarcsecond&Posi8on” T.#Sakamoto,#N.#Gehrels,#E.#Troja,#J.#Norris,#S.#Barthelmy,#J.#Racusin,#N.#Kawai,#A.#Fruchter Why#XGray?##Why#Chandra? G Short#GRBs:#70%#XGray#aHerglow# detecRon,#whereas,#only#35%#detecRon# by#opRcal.# G SubGarcsecond#localizaRon#accuracy#is# needed#to#idenRfy#the#host#galaxy.# Chandra&GO&cycle&13,&14&and&15:& Trigger&criteria& • • Short#GRB#localized#by#SwiH/XRT# No#opRcal#aHerglow#confirmaRon# within#5#hr#aHer#the#burst# Chandra#response#Rme:# 1G3#days Slide by T. Sakamoto; GW workshop @ Tokyo Tech 35 GRB 111117A: Chandra XA Detection • Chandra#ToO#request:#T0#+#6#hr# • Chandra#observaRon#start#Rme:#T0#+#3#days • No#opRcal#aHerglow#detecRon:# • T0#+#2#hr#(GMG;#Zhao#et#al.)# • T0#+#7.9#hr#(NOT;#Andersen#et#al.) 3.9#σ detecRon#(wavedetect),#0.35”#(1#σ) SwiH#short#GRB#XGray#aHerglow Flux#(0.3G10#keV)#[erg#cmG2#sG1] afterglow GRB&111117A XRT Consistent#with#other# SwiH#short#GRBs# (e.g.,#Fong#et#al.#2012) Light&curve:&& ##########t#G1.25#(+0.09/G0.12)# Chandra 11/20/14 Spectrum:& ####Absorbed#powerGlaw# ####Excess#NH:## ####1.8#(+1.1/G1.0)#x#1021#cmG2# #####Photon#index:# ####2.19#(+0.38/G0.36) Time#since#the#trigger#Rme#[s] GW workshop @ Titech G#No#indicaRon#of#lateG Rme#break# G#Dim#XGray#aHerglow 36 GRB 111117A: Optical Afterglow Limit 2.4#m#GaoGMeiGGu#(GMG):#R,#z# 2.56#m#Nordic#OpRcal#Telescope#(NOT):#R,#z# 3.85#m#Telescopio#Nazionale#Galileo#(TNG):#R# 10.4#m#Gran#Telescopio#CANARIAS#(GTC):#g,#r,#i 8#m#Subaru:#K’# 4#m#UKIRT:#K# 3.5#m#CanadaGFrenchGHawaii#Telescope#(CFHT):#J# T0#+#7.23#h#(TNG):# ####R#>#24.7#mag# ####(#3#σ) T0#+#7.89#h#(GTC):# ####r#>#25.8#(AB)#mag# ####(#3#σ) Host 11/20/14 GW workshop @ Titech Deepest# opRcal#limit#on# short#GRBs 37 GRB 111117A: Host Galaxy Host Chandra Offset#between#XA#and#host#center: #r#=#1.0#±#0.2#arcsec# ####=#8.4#±#1.7#kpc#(z=1.3)# Photometric#redshiH:#1.31#(+0.46/G0.23)## Star#forming#galaxy:# τ = 0.1#Gyr#and#1#x#109#MSUN (c.f.,#long#GRB#hosts:#0.06#Gyr#and##1#x#109#MSUN# Leibler#&#Berger#2010) Minimum#kick#velocity:# ##v#=#r#/#τ =#80#km#sG1 (c.f.,#similar#to#or#larger#than# GRB#060502B;#Bloom#et#al.# 2007) Slide by T. Sakamoto; GW workshop @ Tokyo Tech 38 Future Prospect on S-GRBs • Increase golden s-GRB samples – Secure redshift (redshift from an afterglow) – Sub-arcsec location of afterglow – Spectroscopy of s-GRB hosts (careful investigation of E.E. emission) • Coincidence with GW triggers – Advance LIGO/Virgo, KAGURA era is coming • Importance of rapid/deep/long-term IR follow-up – Don t miss Kilonova emission GW workshop @ Titech 39 GRB観測の決定的要因 • 正確かつ迅速な位置決定 • 多波長、特に可視・近赤外の追観測 – 速報+観測開始の仕組み • GCN : インターネット上のGRB連絡網 • HETE VHF: 衛星"地上への速報 • Swift: 望遠鏡を発見衛星自体が搭載 • 将来 – Swiftのような多波長衛星は難しい $ – 発見#追観測 衛星への司令がいつでも • ORBCOMM等、衛星電話メッセージの活用など 40 MAXI GRBs and transients (2̶20 keV) : only MAXI : MAXI + other Serino#et#al.#(2014) hsp://maxi.riken.jp/grbs/ 41 Transient Rate [events /15month] LogN-LogS 分布 ∼7 cts cm-2 -3/2 MAXI transients (戸泉D論発表スライド) Swift GRBによく合う べき -3/2 によく合う Swift GRBs LogN-LogS 分布で2成分を検出 ・Swift GRBに非常によく合う成分: GRB ・ べき -3/2の成分: GRBの残光、星のフレア、AGN 潮汐破壊、Shock Fluence [cts cm-2]breakout 42 Currently#operaRng#transient#missions Swi%/BAT&(P,L,S) INTEGRAL/IBIS&(P,L,S),&SPIBACS&(L) MAXI/GSC&(P,L,S) Fermi/GBM,&LAT&(P,L,S)& KonusBWind&(L,S)& AGILE/Super&AGILE&(P,L,S) Suzaku/WAM&(L,S)& P:#posiRon,#L:#lightcurve,#S:#spectrum## Proposed#transient#missions Lobster/ISSGLobster UFFO#Pathfinder Janus EXIST SVOM LOFT 2015– CALET WFGMAXI 2018(20)– AstroGH/SGD#shield AGSTAR HiGZ#GUNDAM 44 “WideBField&MAXI”&on&ISS& N.#Kawai#+#WFGMAXI#Team DirecRon## of#MoRon# MAXI# 科学目的 監視天域 観測装置 感度 位置決定精度 JEM#EF# X線突発天体の検知と速報 重力波対応天体の発見、ブラックホール等X線連星、GRBs … 常時全天の20% (92分で全天の 80% をカバー) 軟X線大立体角カメラ (SLC: 0.7‒10 keV) 硬X線モニター (HXM: 20 keV‒1 MeV) 50 mCrab /30 s (SLC) 0.1 プラットフォーム ISS/JEM (Selection in 2014, operation 2018‒) 45# WF-MAXIの科学目的と特徴 X線突発天体の検出・位置速報 • 短いGRB(重力波源候補)をはじめとする短時間X 線トランジェントの検出、位置決定、速報 • MAXI の使命の継承 • 世界初の本格的軟X線大天域モニター "新種/稀少 天体現象 • 最高優先度で実施されている大型プロジェクト(KAGRA, ASTRO-H)をサポート • 開発済み技術とISS搭載機会を活用して速く安く開発・配備 "次世代重力波望遠鏡の本格始動時(2018 20)に運用 • 「X線天文学」に閉じず、多波長+非光子天文学・基礎物理 学の広いコミュニティに貢献 46 -‐‑‒ 7-‐‑‒ ( X X ) SH O SH A B G R:8RT 2 通報 24 53 通報 -‐‑‒ 0 -‐‑‒ 01 -‐‑‒ 0 4 短時間トランジェント現象 Tidal#disrupRon# Supernova#/GRB# shock#breakout# Supergiant#fast# XGray#transient# Merging#neutron# star#binary# 48 設計を開始した場合に,打ち上げは ) (/ 年 / 月である.実際の基本設計 開始はこれよりも確実に(1年以上)遅れることを考えると,この制約 WF-MAXI 条件を満たすことは全く保証されない.第3の目的は付加的なものであ る.第4の目的については LB C9D1 との比較検討が必要である. このミッションを実施するのであれば,その規模(リスク経費を含まず • ISAS H25年度小規模プロジェクト公募に提案 " 不採択 ) に約 億の見積もり)から考えて, 1G1 のミッションとして実施するこ – (予算 全小規模プロジェクト合計で年間10億円以下) とが適切である. エキストラサクセスとされている最大の目的が達成されれば,その科学 的な価値は高い.しかし,天空をカバーする領域 ) と稼働率 , を 考慮すると重力波の対応天体を発見する確率はあまり高くなく,リスク は大きい.地上の観測網のみでフォローアップする場合との費用対効果 をよく検討すべきである. 高エネルギー宇宙物理のコミュニティは将来計画の策定作業中であり, 位置づけは不明である.一方,重力波天体は宇宙線分野の最重要な研究 対象の一つと認識されていることから,対応天体の検出確率を高めて, 宇宙線分野のミッションとして再定義することを検討するほうがよいか もしれない. , 評価委員会は,コスト(リスク経費を含めると , 億と予想)に対して, サイエンスのアウトプットは十分ではないと判断し,提案チームに対し てコスト削減の検討を依頼した.その結果,コストを下げると,エキス トラサクセスを達成する確率が更に小さくなることが明らかになった. - 以降 ( ( まで , までの 4B 的視点での審査により,不 と判断したため, 49 「突発天体観測が担う重要課題」のうち、以下をカバーす る。 ① 重力波放出源としての突発天体監視 – 2018年頃に本格稼働する重力波望遠鏡でとらえた現象の対応 天体を捉え、位置を世界へ通報する。 – 対応天体の広帯域(特に低エネルギー領域)スペクトルを取得し、 従来のガンマ線バースト観測にも対応する。 ② 全天モニターの軟X線領域への拡大 – 多波長・非光子観測との連携 MAXIで開拓した軟X線での新しいサイエンス(星の巨大フレア、 新星(白色矮星)爆発の点火、など)を広げるとともに、従来の銀河 系内連星系(BH,NS,白色矮星)の検出・モニターも行う。発見 は迅速に世界へ通報し、X線(ASTROH)を含む多波長での観測を 促す。 50 ① ② ③ ④ # X CCD (SLC) (ISS) (HXM) ISS # # # X # X # # % % % 51 2013 ) # ====# ! (iSEEP) ISS ) # ( ====# ( # ! 2013 ) selecRon 5 ( ( 2013 ! B # =====# :# :# ) 60% ) # (WFGMAXI ) # (MAXI WFGMAXI WFGMAXI # # ====# # # 52 (ISS) % # & 0.1° ( & & & ( ( % & MAXI/SSC,#ASTROH/SXI(CCD # % MAXI & MAXI ) # ## 70%) ) # ),#HETE2/WFM,# # # MAXI % ) # (MAXI ISS # 53 # 59cm WFGMAXI# ISS & & 2 & & & & IF & ( ( 200kg (2 400W (2 )# Ethernet# 20 ( )# WFGMAXI 2 ) )# 1 )# # 54 WF-MAXIと中型バス SLC1 HXM ( ( ) WFGMAXI )# 4 H26 1 #2015 2 27 # ( ) # 55 X線トランジェント 52 –1 0 1 Log#luminosity#(erg/s) 50 2 4 5 6 7 Long GRB Low luminosity GRB WFG MAXI MAXI Short GRB 48 46 44 42 M A X I SN shock breakout 40 38 3 log#seconds X-ray Burst –6 –5 –4 –3 Tidal Disruption Nova shock breakout –2 –1 BH Binary 0 1 2 60 log#days
© Copyright 2024