Loss [dB] Microstrip Triplate Radiation Loss Condutor Loss Dielectric Loss Waveguide Thickness [mm] Loss in Planar Structure Single-Layer Slotted Waveguide Arrays Modes Single-mode Co-Phase Oversize Alternating-Phase Stacking Substrate RLSA Post-Wall Waveguide Slot plate Structure lg p-junction Groove feed structure 0.5l g T-junction exemption of contact perfect contact + ○ + ○ + ○ + ○ + ○ - ○ + ○ - ○ e v a △ ○ ○ w g n i l e v Tra n o i t a r e p △ o × × d e e f s e i ○ er △ × S & Thickness of the antenna substrate : 1.2 mm ○ 60GHz 27dBi, 59% Antenna input Single-layer WG Std. WG ports(Adaptor) Planar circuits Single-layer WG Std. WG Connector Radial WG Post-wall WGV (for DC and IF) 75 mm Std.WG/Coax Std.WG/Coax MMIC IF Upper side Low side lobe SLL < -25dB System mouting Automotive radar FWA Automotive radar FWA 32 m Applicability for millimeter-wave 76GHz 35.5dBi, 64% 26GHz 32.4dBi, 60% 60GHz 32dBi, 55% Backside m Post-wall planar antenna FWA Wireless LAN Plasma processing GG Package × V DD ○ SLL < -18dB (cm) Automotive radar FWA Mobile base station 28/42 Fabrication2.Diffusion Technique bonding by Diffusion 3.Complete Bonding Pressure, Heat 1.Etching thin metal plates Vacuum Ø Etching: high precision (20mm), Diffusion bonding: electric contact Ø Expensive die is not needed, Easy to make multi-layers Fabrications in Various Bands Band Picture Array Size # of slots # of sub arrays 1dB-down gain BW Gain Q 20 x 20 2x2 5% Gain (dB) 35 131mm x 123mm 29/42 34 90% 80% 70% 33 60% Gain Exp. HFSS 32 37.5 38 Directivity Exp. HFSS 38.5 39 39.5 Frequency (GHz) 40 35 Directivity 100% 90% 80% V 68mm x 68mm 16 x 16 8x8 11% [dBi] 34 33 32 Gain Exp. 31 HFSS 30 58 62 64 Frequency [GHz] 66 33 100% 90% 16 x 16 4x4 9% Gain (dB) E 45mm x 48mm 60 32 80% 31 70% 30 80 81 Gain Directivity Exp. HFSS 82 83 84 85 Frequency (GHz) 86 87 Compact-Range Wireless Access System Adopting large aperture antennas in the 60 GHz-band GATE; Communication in the near-field region (convention: far-field region); Reception zone:distance (~ 10 m) & cross-section area (tens of cm square); Antenna size: uniform intensity, wide & long zone, small interference; Gigabit Access Transponder Equipment Multi-Gb/s Large array antenna for the access point MMW carpet !! distance [cm] Reception Zone Multi-Gb/s Reception Zone 251 mm (50l) □ Intersymbol Interference in a 60 GHz Band Compact Range Wireless Access System adopting a Large Aperture Antenna Low-gain antenna for access point?? Large array antenna for the access point Multi-Gb/s GATE Mobile terminal Gain: 3 ~ 9 dBi HPBW: 40 ~ 60 degs. Gigabit Access Transponder Equipment Ando & Hirokawa Lab., Tokyo Institute of Technology Bit Error Rate (BER) System Evaluation of GATE 100 10-1 10-2 10-3 10-4 10-5 10-6 10-7 10-8 10-9 10-10 10-11 10-12 Longitudinal Direction RF Front End 64x64 32x32 16x16 8x8 BB Module 1 2 3 4 5 6 7 8 9 10 11 Propagation Distance z [m] x Prototype of GATE: BB module + RF front end + Antenna; y Maximum data rate is 3.1 Gbit/s by QPSK; z Adopting a rate-14/15 low-density parity-check (LDPC) code; Tx: various ANTs 3 min. measurement, error-free is indicated by BER = 10-12 Stable reception zone related to the antenna size is realized; Tx ANT (CP): different sizes; Rx ANT (LP): open-ended WG; Tx ANT is fixed, and the position of Rx ANT is changed. Large ANT: long & wide reception zone (multipath-free) Problem: degradation for short distance ( < 1 m) Image of reception zone Rx: open-ended WG 38GHz 1Gbps Outdoor system Colaboration for 38GHz outdoor system 2W級ミリ波帯高出力増幅器 飛越結合型帯導波管BPF ローカル&イメージ 抑圧用BPF追加 1Gbps対応 超高速ベースバンドSoC RJ-45 RJ-45 RJ-45 RJ-45 Power Power over over Ethernet Ethernet (PoE) (PoE) RJ-45 RJ-45 10 10//100 100//1000 1000BASE-T BASE-T MAINT MAINT LANCable Cable LAN Super Super High High Speed Speed BaseBand BaseBand Processing ProcessingSoC SoC Maintenance MaintenancePort Port Power Power Gigabits over Gigabits over Ethernet Ethernet Ethernet Ethernet Transceiver (PoE) (PoE) Transceiver AC/DC AC/DC Converter Converter Quadrature Quadrature Modulator Modulator [SiGe] [SiGe] BaseBand BaseBand D/A D/AConv Conv 800Msps 800Msps Gigabits Gigabits Ethernet Ethernet MAC MAC AP AP Digital Digital MODEM MODEM TDD_SW TDD_SW LPF LPF WG_INTF WG_INTF UP UP Converter Converter [GaAs_3D_MMIC] [GaAs_3D_MMIC] IFIFLOCAL LOCAL Oscillator Oscillator PA PAModule Module [GaAs] [GaAs] High Highefficiency efficiency 140mm Waveguide Waveguideantenna antenna RF RFLOCAL LOCAL Oscillator Oscillator AGC AGC 140mm WG_INTF WG_INTF Down Down Converter Converter [GaAs_3D_MMIC] [GaAs_3D_MMIC] Quadrature Quadrature Demodulator Demodulator [SiGe] [SiGe] BaseBand BaseBand A/D A/DConv Conv 400Msps 400Msps CPU CPU DC/DC DC/DC Conv Conv WG WGBPF BPF LNA LNA [InP] [InP] WG WGBPF BPF SAW_BPF SAW_BPF ACin ACin Tx: -10℃ (下り回線に最大帯域を割り当てた場合の上下回線の合計実効速度) Tx: +20℃ 1.0E-04 QPSK 16QAM 64QAM 1000 Tx: +50℃ 1.0E-05 Spec. for 64QAM 800 600 Spec. for 16QAM 1.0E-06 Spec. for QPSK Spec. for 64QAM Spec. for 64QAM 10 1.0E-07 -10℃ +20℃ +50℃ Mask 0 QP SK 1.0E-08 16QAM 64QAM -10 -20 Level (dB) Throughput (Mbps) Theoretical 1.0E-03 Bit Error Rate 1200 高精度な変復調特性を ミリ波帯InP低雑音増幅器 送受貫通で維持 1.0E-02 目標の受信レベル範囲にて1Gbps達成! 1.0E-09 400 1.0E-10 Spec. for QPSK -30 -40 200 NF=4dB 1.0E-11 -50 -80 0 -75 -70 -65 -60 -55 -50 -45 Receive level (dB) -80 -75 -70 -65 -60 -55 Rx level (dBm) -50 -45 -40 O cc upied frequency band = 250.5MHz <Taget Spec. 260MHz -40 全温度範囲にて所望のRF対向生BER特性を確保 -60 37.77 38.27 38.77 Frequency (GHz) 高水準の背景抑圧と帯域内平坦性を実現 Tokyo Tech MMW Model Network Rain rate, Rx Level, BER are recorded every 5 seconds Year 2008~ 2010~ Frequency 25GHz 38GHz Trans. Speed 80Mbps 1Gbps 44 Monitoring System Wireless (25GHz) Tipping-bucket rain gauge MMW Model Network SW RS232-C LAN Monitoring PCs Rain rate Rx level BER (every 5sec) PHS Monitoring PC Throughput SW 47 Comparison to Prior Researches –Rain Rate Backgrounds Rain Attenuation Coefficient g [dB/km] 25 20 15 Heavy Rain (This Research) 50mm/h 40mm/h 30mm/h 10 weak Rain 5 (Prior Research) 0 1 20mm/h The link length shorter than 1km (in most cases) 10mm/h 5mm/h 5 More and more base stations 30 50 100 10 Frequency [GHz] Heavy rain & Short distance Ø Conventional propagation study: assuming weak and uniform rain in large area. Diversity effects for macro scale. Ø Focusing on the behavior of localized rain, we may obtain the diversity effect even in small mesh networks. 13/01/14 3 Years (2010/3-2012/5) Frequency Distribution of Rainfall 48 Ø Rainfall distribution classified according to rain attenuation 10 5 10 4 10 3 10 2 10 1 10 0 10 -1 Ideal Case (Uniform Rainfall) Number of Rain Samples Number of Rain Samples Real Case (Localized Rainfall) 0 Ave 25 rage Rain 50 Rate 75 [mm /h] 100 2 6 4B/km] 8 d 10 ion [ 14 12tenuat 16 At 20 18 Rain c i f ci Spe Localized Behavior of Rainfall 10 5 10 4 10 3 10 2 10 1 10 0 10 -1 0 Ave 25 rage Rain50 Rate 75 [mm 100 /h] 4 2/km] 6 B 10 8 tion [d 12 a 16 14 ttenu 20 18 Rain A cific Spe Intensive Heavy Rain Guam (September 9, 2008) Saitama, Japan (August 2006) Recent metropolitan intensive heavy rain is localized. Densely located millimeterwave line can be better rain gauge. 70 Variogram of Rainfall 100 Rain Rate (A) Rain Rate (A) 45-degree line 19<g£21[dB/km] 75 50 25 0 0 Rain Rate (B) 25 50 75 Rain Rate (B) 100 Ø Quantitative analysis of rainfall variability 1 g (d ) = 2N å {[z( x ) - z( x )] } 2 x 2 - x1 »d 2 1 • where N denotes the number of pairs (x1, x2) separated by a distance equal to d 3 Years (2010/4-2012/5), 1-min data Correlation vs. Variogram of Rainfall Spatial Correlation of rainfall 1 (mm/h)2] exp(-0.3 d ) Variogram of Rainfall [ Correlation 0.6 0.4 0 0 All data Conventional Correlation R ³20[ mm/h] R ³10[ mm/h] 10>R>0[mm/h] 0.2 0.4 0.6 Variogram of rainfall 600 0.8 0.2 0.8 1 1.2 500 R ³20[ mm/h] R ³10[ mm/h] 10>R>0[mm/h] 400 300 200 100 0 0 Distance [km] 0.2 0.4 0.6 0.8 Distance [km] Correlation Distance Rainfall Intensity 10 Variogram 1 1.2 3 Years (2010/4-2012/5), 1-min data Variogram of Rainfall, Attenuation 11 Variogram of average rain rate between links This Distance C RainCD D RainAB=mean(RainA,RainB) Variogram [( mm/h)2] A RainAB B 0 1500 3000 0.067 0.138 0.221 Dista nce Be tween 0.431 Center Points 0.672 0.807 of Links0.750 [km] 1 3 2te 4 6 5 n Ra 8 7nge of Rai 9 a 10 R Variogram of rain attenuation between links 0 This Distance C AttCD D Variogram [( dB)2] A AttAB B 20 40 0.067 0.138 0.221 Dista 2 6 4 m] 8 10 /k nce Be tween C 0.431 14 12 uation [dB 16 enter P 20 18 ain Atten oints of 0.672 0.750 Links [k0.807 fic R c m] Spe i 40GHz band wireless mesh network and proactive re-routing against localized strong rain 無線リンクの 品質劣化兆 候 局地的に発生 する集中豪雨 線路切替の判断は無線 局間のネゴシエーション 降雨量:大 により自律的に実施 質劣化 無線リンクの品 制御 信 別のリンク 号 に経路変 更 荷集 負 の トラヒック ク ッ 中 ヒ 大 トラ 降雨量:中 降雨の 移動方向 別のリンクに 経路変更 信号 制御 各無線局間で 制御信号のやり取り を定期的に実施 バックボー ン ネットワー ク 周囲の無線局から提供 された無線リンク品質情 報を元に、次に降雨の 影響を受ける無線リンク を予測 有線ネットワークによる接 続 稠密配置された大容量無線アクセスゲートのサービス エリア Network throughput degradation <10% 1 year data (2010/3-2011/2) Link Down Rate at Nodes After Diversity Total down time LDR[%] = ´ 100 Total monitoring time Before Diversity A F E D C B 14 108/58 Background In millimeter-wave band •Propagation loss is large •High power devices are expensive Directive antenna Horizontal plane: Beam switching Vertical plane: Cosecant pattern 8-Way Butler Matrix Insertion Loss Measured < 0.25 dB at 22 GHz Calculated < 0.15 dB at 22 GHz Port #1 input (-22.5 deg) Port #2 input (+157.5 deg) 112/58 15 Radiation pattern in the H-plane -50 Amplitude (dB) Directivity (dBi) 10 5 -60 0 -70 -5 -10 -15 -90 -80 -60 -30 0 Angle (deg) 30 60 (a) Calculated directivity Ideal power distribution Measured power distribution 8-element infinitesimal dipole array excited by the 8-way Butler matrix in calculation 90 -90 -60 -30 0 Angle (deg) 30 60 (b) Measured radiation pattern Relative amplitude Port #1 input Port #2 input Port #3 input Port #4 input Port #5 input Port #6 input Port #7 input Port #8 input 90
© Copyright 2024