x - MiWEBA

Loss [dB]
Microstrip
Triplate
Radiation Loss
Condutor
Loss
Dielectric
Loss
Waveguide
Thickness [mm]
Loss in Planar Structure
Single-Layer Slotted Waveguide
Arrays
Modes
Single-mode
Co-Phase
Oversize
Alternating-Phase
Stacking
Substrate
RLSA
Post-Wall Waveguide
Slot plate
Structure
lg
p-junction
Groove feed
structure
0.5l g
T-junction
exemption of contact
perfect contact
+
○
+
○
+
○
+
○
+
○
-
○
+
○
-
○
e
v
a
△
○
○
w
g
n
i
l
e
v
Tra
n
o
i
t
a
r
e
p
△
o
×
×
d
e
e
f
s
e
i
○
er
△
×
S
&
Thickness of the antenna
substrate : 1.2 mm
○
60GHz 27dBi, 59%
Antenna input Single-layer WG
Std. WG
ports(Adaptor)
Planar circuits
Single-layer WG
Std. WG
Connector
Radial WG
Post-wall
WGV
(for DC and IF)
75 mm
Std.WG/Coax
Std.WG/Coax
MMIC
IF
Upper side
Low side lobe
SLL < -25dB
System
mouting
Automotive radar
FWA
Automotive radar
FWA
32 m
Applicability for
millimeter-wave 76GHz 35.5dBi, 64% 26GHz 32.4dBi, 60% 60GHz 32dBi, 55%
Backside
m
Post-wall planar antenna
FWA
Wireless LAN
Plasma processing
GG
Package
×
V DD
○
SLL < -18dB
(cm)
Automotive radar
FWA
Mobile base station
28/42
Fabrication2.Diffusion
Technique
bonding by Diffusion
3.Complete
Bonding
Pressure, Heat
1.Etching thin
metal plates
Vacuum
Ø Etching: high precision (20mm), Diffusion bonding: electric
contact
Ø Expensive die is not needed, Easy to make multi-layers
Fabrications in Various Bands
Band
Picture
Array
Size
# of
slots
# of sub
arrays
1dB-down
gain BW
Gain
Q
20 x 20
2x2
5%
Gain (dB)
35
131mm
x
123mm
29/42
34
90%
80%
70%
33 60%
Gain
Exp.
HFSS
32
37.5
38
Directivity
Exp.
HFSS
38.5
39
39.5
Frequency (GHz)
40
35
Directivity
100%
90%
80%
V
68mm
x
68mm
16 x 16
8x8
11%
[dBi]
34
33
32
Gain
Exp.
31
HFSS
30
58
62
64
Frequency [GHz]
66
33 100%
90%
16 x 16
4x4
9%
Gain (dB)
E
45mm
x
48mm
60
32
80%
31 70%
30
80
81
Gain
Directivity
Exp.
HFSS
82 83 84 85
Frequency (GHz)
86
87
Compact-Range Wireless Access System
Adopting large aperture antennas in the 60 GHz-band GATE;
Communication in the near-field region (convention: far-field region);
Reception zone:distance (~ 10 m) & cross-section area (tens of cm square);
Antenna size: uniform intensity, wide & long zone, small interference;
Gigabit Access
Transponder Equipment
Multi-Gb/s
Large array antenna
for the access point
MMW
carpet !!
distance [cm]
Reception Zone
Multi-Gb/s
Reception Zone
251 mm (50l) □
Intersymbol Interference in a 60 GHz Band
Compact Range Wireless Access System
adopting a Large Aperture Antenna
Low-gain antenna
for access point??
Large array antenna
for the access point
Multi-Gb/s
GATE
Mobile terminal
Gain: 3 ~ 9 dBi
HPBW: 40 ~ 60 degs.
Gigabit Access Transponder Equipment
Ando & Hirokawa Lab., Tokyo Institute of Technology
Bit Error Rate (BER)
System Evaluation of GATE
100
10-1
10-2
10-3
10-4
10-5
10-6
10-7
10-8
10-9
10-10
10-11
10-12
Longitudinal Direction
RF Front End
64x64
32x32
16x16
8x8
BB Module
1 2 3 4 5 6 7 8 9 10 11
Propagation Distance z [m]
x
Prototype of GATE: BB module + RF front end + Antenna;
y
Maximum data rate is 3.1 Gbit/s by QPSK;
z
Adopting a rate-14/15 low-density parity-check (LDPC) code; Tx:
various ANTs
3 min. measurement, error-free is indicated by BER = 10-12
Stable reception zone related to the antenna size is realized;
Tx ANT (CP): different sizes; Rx ANT (LP): open-ended WG;
Tx ANT is fixed, and the position of Rx ANT is changed.
Large ANT: long & wide reception zone (multipath-free)
Problem: degradation for short distance ( < 1 m)
Image of
reception zone
Rx:
open-ended WG
38GHz 1Gbps Outdoor system
Colaboration for 38GHz outdoor system
2W級ミリ波帯高出力増幅器
飛越結合型帯導波管BPF
ローカル&イメージ
抑圧用BPF追加
1Gbps対応 超高速ベースバンドSoC
RJ-45
RJ-45
RJ-45
RJ-45
Power
Power
over
over
Ethernet
Ethernet
(PoE)
(PoE)
RJ-45
RJ-45
10
10//100
100//1000
1000BASE-T
BASE-T
MAINT
MAINT
LANCable
Cable
LAN
Super
Super High
High Speed
Speed
BaseBand
BaseBand Processing
ProcessingSoC
SoC
Maintenance
MaintenancePort
Port
Power
Power
Gigabits
over
Gigabits
over
Ethernet
Ethernet
Ethernet
Ethernet
Transceiver
(PoE)
(PoE) Transceiver
AC/DC
AC/DC
Converter
Converter
Quadrature
Quadrature
Modulator
Modulator
[SiGe]
[SiGe]
BaseBand
BaseBand
D/A
D/AConv
Conv
800Msps
800Msps
Gigabits
Gigabits
Ethernet
Ethernet
MAC
MAC
AP
AP
Digital
Digital
MODEM
MODEM TDD_SW
TDD_SW
LPF
LPF
WG_INTF
WG_INTF
UP
UP
Converter
Converter
[GaAs_3D_MMIC]
[GaAs_3D_MMIC]
IFIFLOCAL
LOCAL
Oscillator
Oscillator
PA
PAModule
Module
[GaAs]
[GaAs]
High
Highefficiency
efficiency
140mm
Waveguide
Waveguideantenna
antenna
RF
RFLOCAL
LOCAL
Oscillator
Oscillator
AGC
AGC
140mm
WG_INTF
WG_INTF
Down
Down
Converter
Converter
[GaAs_3D_MMIC]
[GaAs_3D_MMIC]
Quadrature
Quadrature
Demodulator
Demodulator
[SiGe]
[SiGe]
BaseBand
BaseBand
A/D
A/DConv
Conv
400Msps
400Msps
CPU
CPU
DC/DC
DC/DC
Conv
Conv
WG
WGBPF
BPF
LNA
LNA
[InP]
[InP]
WG
WGBPF
BPF
SAW_BPF
SAW_BPF
ACin
ACin
Tx: -10℃
(下り回線に最大帯域を割り当てた場合の上下回線の合計実効速度)
Tx: +20℃
1.0E-04
QPSK
16QAM
64QAM
1000
Tx: +50℃
1.0E-05
Spec. for 64QAM
800
600
Spec. for 16QAM
1.0E-06
Spec. for QPSK
Spec. for 64QAM
Spec. for 64QAM
10
1.0E-07
-10℃
+20℃
+50℃
Mask
0
QP SK
1.0E-08
16QAM
64QAM
-10
-20
Level (dB)
Throughput (Mbps)
Theoretical
1.0E-03
Bit Error Rate
1200
高精度な変復調特性を ミリ波帯InP低雑音増幅器
送受貫通で維持
1.0E-02
目標の受信レベル範囲にて1Gbps達成!
1.0E-09
400
1.0E-10
Spec. for QPSK
-30
-40
200
NF=4dB
1.0E-11
-50
-80
0
-75
-70
-65
-60
-55
-50
-45
Receive level (dB)
-80
-75
-70
-65
-60
-55
Rx level (dBm)
-50
-45
-40
O cc upied frequency band =
250.5MHz <Taget Spec. 260MHz
-40
全温度範囲にて所望のRF対向生BER特性を確保
-60
37.77
38.27
38.77
Frequency (GHz)
高水準の背景抑圧と帯域内平坦性を実現
Tokyo Tech MMW Model Network
Rain rate, Rx Level, BER are
recorded every 5 seconds
Year
2008~
2010~
Frequency
25GHz
38GHz
Trans. Speed
80Mbps
1Gbps
44
Monitoring System
Wireless (25GHz)
Tipping-bucket rain gauge
MMW Model Network
SW
RS232-C
LAN
Monitoring PCs
Rain rate
Rx level
BER
(every 5sec)
PHS Monitoring PC
Throughput
SW
47
Comparison to Prior Researches –Rain Rate
Backgrounds
Rain Attenuation Coefficient
g [dB/km]
25
20
15
Heavy Rain
(This Research)
50mm/h
40mm/h
30mm/h
10
weak Rain
5 (Prior Research)
0
1
20mm/h
The link length shorter than 1km
(in most cases)
10mm/h
5mm/h
5
More and more base stations
30 50 100
10
Frequency [GHz]
Heavy rain & Short distance
Ø Conventional propagation study: assuming weak and
uniform rain in large area. Diversity effects for macro scale.
Ø Focusing on the behavior of localized rain, we may obtain
the diversity effect even in small mesh networks.
13/01/14
3 Years (2010/3-2012/5)
Frequency Distribution of Rainfall
48
Ø Rainfall distribution classified according to rain attenuation
10
5
10
4
10
3
10
2
10
1
10
0
10
-1
Ideal Case (Uniform Rainfall)
Number of Rain Samples
Number of Rain Samples
Real Case (Localized Rainfall)
0
Ave
25
rage
Rain
50
Rate
75
[mm
/h]
100
2
6 4B/km]
8
d
10 ion [
14 12tenuat
16
At
20 18 Rain
c
i
f
ci
Spe
Localized Behavior of Rainfall
10
5
10
4
10
3
10
2
10
1
10
0
10
-1
0
Ave 25
rage
Rain50
Rate 75
[mm 100
/h]
4 2/km]
6
B
10 8 tion [d
12
a
16 14 ttenu
20 18 Rain A
cific
Spe
Intensive Heavy Rain
Guam (September 9, 2008)
Saitama, Japan (August 2006)
Recent metropolitan intensive
heavy rain is localized.
Densely located millimeterwave line can be better rain gauge.
70
Variogram of Rainfall
100
Rain Rate (A)
Rain Rate (A)
45-degree line
19<g£21[dB/km]
75
50
25
0
0
Rain Rate (B)
25 50 75
Rain Rate (B)
100
Ø Quantitative analysis of rainfall variability
1
g (d ) =
2N
å
{[z( x ) - z( x )] }
2
x 2 - x1 »d
2
1
• where N denotes the number of pairs (x1, x2) separated by
a distance equal to d
3 Years (2010/4-2012/5), 1-min
data
Correlation vs. Variogram of Rainfall
Spatial Correlation of rainfall
1
(mm/h)2]
exp(-0.3 d )
Variogram of Rainfall [
Correlation
0.6
0.4
0
0
All data
Conventional Correlation
R ³20[ mm/h]
R ³10[ mm/h]
10>R>0[mm/h]
0.2
0.4
0.6
Variogram of rainfall
600
0.8
0.2
0.8
1
1.2
500
R ³20[ mm/h]
R ³10[ mm/h]
10>R>0[mm/h]
400
300
200
100
0
0
Distance [km]
0.2
0.4
0.6
0.8
Distance [km]
Correlation
Distance
Rainfall Intensity
10
Variogram
1
1.2
3 Years (2010/4-2012/5), 1-min
data
Variogram of Rainfall, Attenuation
11
Variogram of average rain rate between links
This Distance
C
RainCD D
RainAB=mean(RainA,RainB)
Variogram [( mm/h)2]
A
RainAB B
0
1500
3000
0.067
0.138
0.221
Dista
nce Be
tween
0.431
Center
Points
0.672
0.807
of Links0.750
[km]
1
3 2te
4
6 5
n Ra
8 7nge of Rai
9
a
10
R
Variogram of rain attenuation between links
0
This Distance
C
AttCD
D
Variogram [( dB)2]
A
AttAB B
20
40
0.067
0.138
0.221
Dista
2
6 4 m]
8
10
/k
nce Be
tween C 0.431
14 12 uation [dB
16
enter P
20 18 ain Atten
oints of 0.672
0.750
Links [k0.807
fic R
c
m]
Spe i
40GHz band wireless mesh network and proactive
re-routing against localized strong rain
無線リンクの
品質劣化兆
候
局地的に発生
する集中豪雨
線路切替の判断は無線
局間のネゴシエーション
降雨量:大
により自律的に実施
質劣化
無線リンクの品
制御
信
別のリンク
号
に経路変
更 荷集
負
の
トラヒック
ク
ッ 中
ヒ
大
トラ
降雨量:中
降雨の
移動方向
別のリンクに
経路変更
信号
制御
各無線局間で
制御信号のやり取り
を定期的に実施
バックボー
ン
ネットワー
ク
周囲の無線局から提供
された無線リンク品質情
報を元に、次に降雨の
影響を受ける無線リンク
を予測
有線ネットワークによる接
続
稠密配置された大容量無線アクセスゲートのサービス
エリア
Network throughput degradation <10%
1 year data (2010/3-2011/2)
Link Down Rate at Nodes
After Diversity
Total down time
LDR[%] =
´ 100
Total monitoring time
Before Diversity
A
F
E
D
C
B
14
108/58
Background
In millimeter-wave band
•Propagation loss is large
•High power devices are expensive
Directive antenna
Horizontal plane:
Beam switching
Vertical plane:
Cosecant pattern
8-Way Butler Matrix
Insertion Loss
Measured
< 0.25 dB at 22 GHz
Calculated
< 0.15 dB at 22 GHz
Port #1
input
(-22.5 deg)
Port #2
input
(+157.5 deg)
112/58
15
Radiation pattern in the H-plane
-50
Amplitude (dB)
Directivity (dBi)
10
5
-60
0
-70
-5
-10
-15
-90
-80
-60
-30
0
Angle (deg)
30
60
(a) Calculated directivity
Ideal power distribution
Measured power distribution
8-element infinitesimal dipole array
excited by the 8-way Butler matrix
in calculation
90
-90
-60
-30
0
Angle (deg)
30
60
(b) Measured radiation pattern
Relative amplitude
Port #1 input
Port #2 input
Port #3 input
Port #4 input
Port #5 input
Port #6 input
Port #7 input
Port #8 input
90