動的ネットワークバイオマーカーによる 疾病早期診断技術 「未病」の検出と創薬標的発見 東京大学生産技術研究所 客員教授 陳洛南 1 (1)発明の名称:動的ネットワークバイオマーカー の検出装置、検出方法及び検出プログラム • 公開番号: 2014‐064515 • 出願人:科学技術振興機構 • 発明者:陳洛南、合原一幸、劉鋭、劉治平、李美儀 (2)発明の名称:ネットワークエントロピーに基づ く生体の状態遷移の予兆の検出を支援する検出装置、 検出方法及び検出プログラム • 公開番号: 2014‐083194 • 出願人:科学技術振興機構 • 発明者: 合原一幸、陳洛南、劉鋭 2 Once disease occurs, difficult to be cured 《黄帝内经》紀元前221年 《Yellow Emperor's Medicine》 221 BC 上医治未病,中医治欲病,下医治已病 the best doctor treats unoccurred disease the better doctor treats occurring disease 定性的な概念 → the inferior doctor treats occurred disease. 定量的な指標 Early diagnosis by dynamical network biomarkers 3 特許 動的ネットワークバイオ マーカーによる定量的に 疾患 「予兆」検出 「未病」診断 創薬 標的 個別化医療 4 臨界状態 正常状态 Normal state (未病状态:reversible) 前疾病状态 Pre-disease state (已病状态:irreversible) 疾病状态 Disease state Early-disease state 疾病早期状态 Disease progression 5 Conceptual illustration from mathematics viewpoint Charaterizing the limit 1. Bifurcation • Z(t)=(z1(t),…,zn(t)) are state, P are parameters. • The stability of one equilibrium will change from stable to unstable at bifurcation point Pc . Normal Pc Bifurcation Point Chen, et al., Scientific Reports, 2, 342, 2012 Critical Transition (Catastrophy) Disease Disease 6 Catastrophic bifurcation Conceptual illustration from physics viewpoint Landscape 2. Potential Energy Function Small Normal Disease Critical Critical slowing down Critical Deviation Progression Normal Large Disease Disease Small Disease State Disorder 7 Conceptual illustration from information-science viewpoint 3. Information Entropy (Disorder) (Reprogramming) (Disorder) Disease progression disease state Liu, et al., Scientific Reports, 2, 813, 2012 8 Critical Question? Can we make early diagnosis? on pre-disease state • Constraint: a small number of samples • Requirement : a large number of observations e.g. 3 samples for a person (e.g. microarray data) ( or proteomics data) 9 Observation Data • High throughput data Z: a few samples but a large number of outputs e.g. 5 samples for a person • For example: Genomics and Proteomics Data for control cases (or normal cases), critical cases (pre‐ disease cases), and disease cases. 10 Mathematical foundation System Driving Factors (unknown) Parameters P Slowly changing factors, e.g. genetic (SNP,CNV), epigenetic (methylation, acetylation) factors Responses (observable) State Variables Z e.g. gene expression, protein expression The progression of a disease is considered as the evolution of a nonlinear dynamical system. i.e., identify the leading network which makes the first move into the disease state. 11 Main idea Mathematical Scheme Transform Global network in original space (observable Z) Transform center manifold Subnetwork or DNB in original space (unobservable Y) (observable Z) Generally, one or two dimensions in Surprisingly ! Complicated equations usually in very high dimensional space Dynamics is constrained to 1 or 2 dimensional abstract space Complicated equations usually in very high dimensional space Y(k+1) = g(Y(k); P) Limit of normal Before critical period (Normal state) Critical period (Pre‐disease state) Disease progression After critical period (Disease state) 12 Conceptual Illustration Features of the limit Center Manifold • There exists 1‐D center manifold before a generic bifurcation for any systems, regardless of their differences. • We can detect the signal whenever the system approaches the center manifold before the bifurcation. Center manifold Before bifurcation Near bifurcation After bifurcation All roads lead to Rome 13 All dynamics converge to the center manifold ! Conceptual Illustration Analysis on State Space (from 1‐D center manifold to network) Y1 Z Map to the subnetwork 1-D center manifold (Unobservable Y1) Network (Observable Z) 14 Main Theorem 1. If both i and j are in dominant group, Pearson Correlation Standard Deviation 2. If only i is in dominant group, Pearson Correlation Standard Deviation 3. If neither i or j is in dominant group, Pearson Correlation Standard Deviation Three Measurable Conditions Critical State 15 It always holds provided that a system is becoming increasingly sensitive to external perturbations, regardless of bifurcations. Dynamical Network Biomarker (DNB) DNB 創薬標的 DNB The leading Network 16 DNBの条件 • DNBは従来のバイオマーカーと異なり、正常状態と病気状態 を判別するのではなく、正常状態とその極限、即ち、臨界状 態或いは病気前期をはっきりと識別することを目的とする。 • 次の三つの条件を満たす遺伝子或いは分子のグループがDNB となる。 (1)そのグループの分子の標準偏差が急激的に上昇する; (2)そのグループの分子間の相関性が急激に上昇する; (3)そのグループの分子と他の分子との間の相関性が急激に 降下する。 この三つの条件を満たすDNBが存在することが、測定された人 がこの期間において病気早期状態にあることのシグナルとなる 。 17 • Static feature : DNA From DNA to DNB • Dynamic feature : DNB 18 Birds Birds Social Phenomena The essential feature of a phase transition is a structural reordering, i.e., long range order – everything gets connected so that things can be reconnected in a different way ‐‐ Collapse of fish stocks, stock market, ice melting to water, diamonds to graphite, revolution Herding behavior Connectivity Avalanche Critical slowing down (network science) (physics science) (social science) Fish Multi-variables, Network Internet 19 Single-variables, Dynamics Herding behavior, Connectivity Avalanche, Critical Slowing-Down Strongly Correlative Fluctuations (DNB Theory: fluctuated local herding behavior) Unified Signal Dynamical Network Marker Fluctuation Resonance Catastrophe Revolution Collapse of regime 20 Signal not from statistics but from dynamics Normal state Pre-disease state Disease state Disease progression It cannot be detected by GWAS even with a large number of samples Information not from average values but individual variations 21 Composite Indicator based on DNB PCCd : average PCC of DNB in absolute value PCCo : average PCC between DNB and others in absolute value SDd : average SD of DNB Based on the three conditions 22 Critical Question? Can we make early diagnosis? on pre-disease state • condition: a small number of samples but large data 3 consecutive samples for a person YES! (e.g. microarray data) ( or proteomics data) Not one day in a year but three-consecutive days in a year for physical check 23 Model‐Free Algorithm for DNB Choose genes with high deviations Cluster genes at each period Deviation Test (Step-1) Correlation Test (Step-2) Determine DNB by three conditions Functional analysis on DNB Significance Test (Step-3) Functional Test (Step-4) 24 Three Diseases • Acute Lung Injury Mouse • Liver Cancer (HBV, HCV) Human • Lymph Cancer Human More examples: Diabetes - Rat ; Influenza - Human Chen, et al., Scientific Reports, 2, 342, 2012 Liu, et al., Scientific Reports, 2, 813, 2012 Liu, et al., Medicinal Research Reviews, 2013 25 26 Results in DNB in DNB between DNB and others 27 composite Dynamical changes of whole mouse network (3452 genes and 9238 links) including DNB during disease progression for lung injury (color: not expression but our criterion) Even with strong noise on individual variables, DNB can robustly detect the signal due to a group of strongly collective fluctuations. Lung injury Normal Lung Pre-disease 28 The leading network to the disease Dynamical changes in whole PPI network (2291 genes) including the leading network during disease progression for HCC (Color: not expression but our criterion) Pre-disease metastasis 29 Human HCV-Induce Liver Cancer Human HBV‐Induce Liver Cancer (Dynamical Network Biomarker) 30 Clinic symptomatic or asymptomatic subjects in influenza dataset (H3N2/Wisconsin) 17 subjects in live influenza experiment N Symptom (disease state) S S1 N N N N N N N S S S S S S S S S S5 N N N N N N N S S S S S S S S S S6 N N N N N N N S S S S S S S S S S7 N N N N N N N S S S S S S S S S S8 N N N N N N N N N N S S S S S S S10 N N N N N N N N N N N S S S S S S12 N N N N N N N N N N N N N S S S S13 N N N N N N N N N N N N N N S S S15 N N N N N N N N N N N N N N S S S2 N N N N N N N N N N N N N N N N S3 N N N N N N N N N N N N N N N N S4 N N N N N N N N N N N N N N N N S9 N N N N N N N N N N N N N N N N S11 N N N N N N N N N N N N N N N N S14 N N N N N N N N N N N N N N N N S16 N N N N N N N N N N N N N N N N S17 N N N N N N N N N N N N N N N N Hour ‐24 0 5 12 21 29 36 45 53 60 69 77 84 93 101 108 Asymptomatic subjects Symptomatic subjects Non-symptom (normal state or pre-disease state) Time 31 Clinical data * * * 32 Predict the pre‐disease state before the disease 33 Prediction Clinic symptomatic or asymptomatic subjects in influenza dataset (H3N2/Wisconsin) Non-symptom (normal state or pre-disease state) N 17 subjects in live influenza experiment (pre-disease state) Symptom (disease state) S S1 N N N N N N N S S S S S S S S S S5 N N N N N N N S S S S S S S S S S6 N N N N N N N S S S S S S S S S S7 N N N N N N N S S S S S S S S S S8 N N N N N N N N N N S S S S S S S10 N N N N N N N N N N N S S S S S S12 N N N N N N N N N N N N N S S S S13 N N N N N N N N N N N N N N S S S15 N N N N N N N N N N N N N N S S S2 N N N N N N N N N N N N N N N N S3 N N N N N N N N N N N N N N N N S4 N N N N N N N N N N N N N N N N S9 N N N N N N N N N N N N N N N N S11 N N N N N N N N N N N N N N N N S14 N N N N N N N N N N N N N N N N S16 N N N N N N N N N N N N N N N N S17 N N N N N N N N N N N N N N N N Hour ‐24 0 5 12 21 29 36 45 53 60 69 77 84 93 101 108 Asymptomatic subjects Symptomatic subjects N Early diagnosis before disease Time 34 Diabetes Rats (microarray data) 8wk 4wk 12wk 16wk Beta 细胞损伤 Beta Cell Failure 胰岛素抵抗 Insulin Resistance 5 GK 5 GK 20wk 5 GK 5 GK 5 GK 糖尿病鼠 5 Wistar 5 Wistar 5 Wistar 5 Wistar 5 Wistar 正常鼠 Liver Tissues Genes 10729 Muscle 10729 Adipose 10729 3tissues,5 stages , 25 GK,25 Wister (150 samples) 35 DNB for each tissue of GK rats 36 Concentrations of plasma glucose and insulin of GK and WKY rats insulin resistance The first Critical point The second Critical point β-cell failure The first Critical point The second Critical point Consistent with the phenotypes !!! 37 What is the relation between DNB and DEG (DEG: Differential Expressed Genes) 动态网络标志物 差异表达基因 There are few overlaps of genes, but large overlaps of pathways (DNB and DEG are enriched in the same pathways !) DEG is the result of the disease, but DNB is its cause 38 Relation between DNB and DEG ! Steroid hormone biosynthesis – L1 类固醇激素合成 DNB: Upstream ! DEG: Downstream ! Members of DNB stay important positions to regulate the downstream 1. Upstream 2. As messengers or receptors 3. As a part of the combined complex DNB over-expressed genes under-expressed genes White and Green: background 39 Chen, et al., Scientific Reports, 2, 342, 2012 Liu, et al., Scientific Reports, 2, 813, 2012 Liu, et al., Medicinal Research Reviews, 2013 Dynamic Theory Result in Statistic Theory Model Free Method 40 Liu, et al., Medicinal Research Reviews, 2013 Biomarkers Molecular biomarker score Diseased person Molecular Biomarker Distinguish disease from normal state Static signal 19XX Normal person Time Network biomarker score Network Biomarker Dynamical Network Biomarker Distinguish disease from normal state Diseased person Static signal 2008 Our work Normal person Time Dynamical network biomarker score Distinguish pre‐disease from normal state Pre-diseased person 2012 Dynamic signal Normal person (Critical Transition, Leading Network, Early Diagnosis) Our work Time 41 Chen, et al., Scientific Reports, 2012 ; Liu, et al., Scientific Reports, 2012 Conclusion • A model free approach to identify early‐signal before critical transitions by small samples of big data • It can identify the causal network to disease state • It can be applied to other biological processes • DNB distinguishes pre‐disease and normal state, although little difference in terms of static features exists between them. • DNB detects pre‐disease state in a dynamical manner, in contrast to static traditional biomarkers • Handle personal variation (e.g. genetic or epigenetic factors). Each individual may progress to the same disease through different networks (personalized medicine) 42 応用分野 医療、製薬、ヘルスケア分野にて、ビッグデータを 測定し、DNB検出・解析により、 ・疾患の超早期診断、病態悪化の予兆検出 ・個別疾患、個人対応の個別医療の実現 ・創薬的標的の発見 ・定期検査、健康診断などでシーケンス、タンパク 質、代謝物のデータより癌、心臓病、糖尿病など の疾患、医療画像のデータより脳疾患などの超 早期診断 43 実用化に向けた課題 ・ 現在、DNBについて理論とその応用枠組みが 可能なところまで開発済み。しかし、個々の病気 の特徴をいかに取り込むかの点が未解決である。 ・今後、臨床或いは実験データを取得し、個々の 疾患における早期診断、病態悪化の予兆検出 の実証、実績を積み重ねていく必要がある。 44 企業への期待 ・ 個々の疾患について、臨床或いは実験データ を測定し、そのDNBを開発することについて、企 業との共同研究を希望。 ・また、製薬とヘルスケア分野への展開を考えて いる企業には、薬の標的の同定と健康の定量的 測定について、本技術の導入が有効と思われる。 45 お問い合わせ先 • コーディネータ 科学技術振興機構 知的 財産戦略センター 保護・活用グループ • • • 五月女 勲 TEL 03-5214-8486 FAX 03-5214-8417 e‐mail: [email protected] 46 Thanks 47
© Copyright 2025