15:35- 第9族金属アニオン錯体を鍵活性種とする炭素―炭素結合形成反応 Carbon-Carbon Bond Formations by Anionic Group 9 Metal Complexes 岩 孝紀 先生 Dr. Takanori Iwasaki 講演者プロフィール 岩 孝紀(いわさき たかのり) 大阪大学 大学院工学研究科 応用化学専攻 助教 2004年 大阪大学基礎工学部化学応用科学科卒業 2009年 大阪大学大学院基礎工学研究科物質創成専攻博士課程修了、博士(理学) (大阪大学、2009年、指導教官:真島和志教授、大嶋孝志准教授)、2009年より現職。 第4回GSCポスター賞(2008)、日本化学会第88春季年会学生講演賞(2008)、 JSPC Award for Excellence 2008(2008)、有機合成若手セミナー優秀研究発表賞(2008)、 Reaxys PhD Prize 2010 ファイナリスト(2010)、 有機合成化学協会研究企画賞旭化成ファーマ研究企画賞(2011) Reaxys Prize Club Symposium in Japan 2014.3.28 Reaxys Prize Club Symposium in Japan 2014.3.28 9 (-*0'%$&― Carbon-Carbon Bond Formations by Anionic Group 9 Metal Complexes 1 2#"!" (Grad. Sch. of Eng., Osaka Univ.) Takanori IWASAKI Reaxys Prize Club+0.,)/ in Japan 2014 @ 2014328 How to Design New Transition Metal Catalysts • 39 transition-metal elements • Valent of transition metal center • Coordination number • Neutral or cationic (anionic?) • Ligand control • Bimetallic, multimetallic etc… Umpolung transition metal center, namely anionic transition metal species are not wellestablished in contrast with other approaches to design novel catalytic system. Can it be an effective approach to develop new class of catalysts? 1 Reaxys Prize Club Symposium in Japan 2014.3.28 Anionic Transition Metal Species –Gilman Reagent– – CuX + R Cu R m+ R–m m = Li, MgX Gilman, H. JOC 1952. Cuprate-mediated C–C bond formations 1,4-Addition R' SN2' reaction – R Cu R m+ R' R X O – R Cu R m+ R O Cross-coupling Carbocupration – R' R Cu R m+ R – R Cu R m+ Alkyl–X Alkyl–R R' Cu R' R' Anionic Cu species (Gilman reagent) show excellent reactivity toward various substrates, implying synthetic utility of anionic transition metal species and could be used in catalytic manner in some cases. Anionic Transition Metal-Catalyzed C–C Bond Formations Br + R3Si R3Si MnCl2 Alkyl–MgCl Alkyl Br R3Si R3Si Br Br Alkyl–X Alkyl + R3Si MgCl SiR3 CoCl2 R3Si SiR3 + Alkyl NiCl2 or Pd(acac)2 R–m m = MgX, ZnX – Mg+Cl Mn Alkyl Oshima, K. TL 1997. SiR3 2– R3Si SiR3 Co (Mg+Cl)2 R3Si Oshima, K. ACIE 2005. – Alkyl–R M m+ R M = Ni, Pd Kambe, N. JACS 2002, ACIE 2004. However, anionic transition-metal-catalyzed C–C bond formation is rarely discussed except the case of Cu. Herein, new entry of group 9 metals (Co and Rh) in C–C bond formations will be presented. 2 Reaxys Prize Club Symposium in Japan 2014.3.28 This Work–Co-Catalyzed Alkyl-Alkyl Cross-Coupling Reaction– R1 Alkyl + X XMg R2 2 mol% CoCl2 4 mol% LiI 2 eq or R3 R1 THF, 50 ˚C Alkyl R2 R3 – R'-MgX Co R' Mg+X R-X B Co MgX2 A Co R R' R' R C Iwasaki, T.; Takagawa, H.; Singh, S. P.; Kuniyasu, H.; Kambe, N. J. Am. Chem. Soc. 2013, 135, 9604. Conditions Screening nOct Br + tBu MgCl 1.2 eq 2 mol % CoCl2 4 mol % LiI 2 equiv 1,3-butadiene THF, 50 ˚C, 5 h standard conditions nOct tBu + Octane + Octenes nOct-tBu (%) Octane (%) Octenes (%) variation from standard conditions none 84 1 1 NiCl2 instead of CoCl2 7 1 trace PdCl2 instead of CoCl2 trace 3 11 CuCl2 instead of CoCl2 19 trace 2 no LiI 18 trace 4 no 1,3-butadiene trace trace 16 at 0 ˚C n.d. trace 2 isoprene instead of 1,3-butadiene 92 1 trace LiCl instead of LiI 27 2 7 CoI2 and LiCl 76 1 3 nOct * 58% of tBu was obtained. Ineffective catalyst: CrCl2, MnCl2, FeCl2 entry 1 2 3 4* 5 6 7 8 9 10 Cf. Chem. Commun. 2008. Me, Ph Ineffective additive: PPh3, TMEDA, Ph 3 Reaxys Prize Club Symposium in Japan 2014.3.28 Co-Catalyzed sp3C-sp3C Coupling nOct Br nDec–Br nBu–Br 10 mol% CoCl2(dppp) + ClMg THF, –20 ˚C, 2 h 5 mol% cat. 30 mol% TMEDA THF, rt iPr nPen nBu nOct iPr iPrN PPh2 iPrN H N PPh2 N Cl Zr PPh2 PPh2 H Co I N iPr R= 98% nDec–R sBu 20% THF, 10 ˚C, 1 h tBu 0% Cahiez, G. Adv. Synth. Catal. 2008. nOct–MgBr + 90% Oshima, K. ACIE 2002; CEJ 2004. 5 mol% CoCl2 10 mol% LiI 20 mol% TMEDA R–MgBr + nOct H N PPh2 iPr 63% Co I PPh2 38% Thomas, C. M. Eur. J. Inorg. Chem. 2011. Scope and Limitations of Grignard Reagents Alkyl Br + R MgX 1.2 eq 2 mol % CoCl2, 4 mol % LiI 2 equiv isoprene THF, 50 °C, 5 h Alkyl R OMe nNon 91% nNon nNon 85% (82%) nOct nOct 81% (80%) nOct nNon nOct <1% nOct 93% 80% (0.1 mol% CoCl2) nOct 92% 82% (80%) 89% (83%) nOct 77% 4% Me 90% (86%) nOct Ph <1% *GC yield (Isolation yield) 4 Reaxys Prize Club Symposium in Japan 2014.3.28 Relative Reactivity of Alkyl Halides R1 nOct–X + 2 mol % CoCl2, 4 mol % LiI 2 equiv isoprene R2 R3 ClMg X= relative reactivity: 1 0.3 <0.06 a 94% 62% 2% 71% 58% I > OTs > Br > F >> Cl >6 X Br Fa Cl I OTs R2 R3 nOct THF, 50 °C, 5 h 1.2 eq H3C R1 – Reaction time was 24 h Bond Energy X = F : 470 kJ/mol Cl : 351 kJ/mol Br : 293 kJ/mol Scope and Limitations of Alkyl Halides R1 Alkyl–Br + 2 mol % CoCl2, 4 mol % LiI 2 equiv isoprene R2 R3 ClMg 1.2 eq R1 R3 Alkyl THF, 50 °C, 5 h R2 TBSO CF3 95% 86% 88% (86%) S N OTHP 84% (80%) O Et2N 80% (78%) O 79% (73%) O O 81% (76%) TsN BocN I 69% (67%) 95% (91%) N BocN 61% (60%) 80% (76%) O 76% (74%) 78% (72%) TsN 58% (55%) 5 EtO 79% (74%) * GC yield (Isolation yield) Reaxys Prize Club Symposium in Japan 2014.3.28 Selective Cross-Coupling Cl Br Cl Br 92% 2 mol % CoCl2, 4 mol % LiI 2 equiv isoprene Br Br THF, 50 °C, 5-12 h R1 Br 86% R2 R3 ClMg 1.2 eq Br Br 94% Investigation on Reaction Mechanism 2 mol % CoCl2 4 mol % LiI 2 equiv isoprene Br + R 1.2 eq R R + MgCl THF, 50 °C 12 h RMgCl 1˚ (nOct) 71% 2˚ (3-Hep) 68% 3˚ (2,5-Me-2-Hex) 50% 3% <1% 2% D Ha tBu D Ha Br tBu D Hb threo + tBu–MgCl 2 mol % CoCl2 4 mol % LiI 2 equiv isoprene THF, 50 °C, 5 h 73% yield tBu >95 erythro (inversion) Ja-b = 12.4 Hz + D Ha tBu tBu 6 Hb D D Hb threo (retention) Ja-b = 6.9 Hz 5 Reaxys Prize Club Symposium in Japan 2014.3.28 Time-Course of Dimerization of Butadiene nNon–Br CoCl2 LiI + 0.1 mmol + nOct–MgCl 0.4 mmol 0.2 mmol 10 mmol THF, 50 °C 10 min 3.0 mmol or sBu–MgCl 3.0 mmol Yield of dimer (%) (based on Co) Addition of nNonBr Addition of sBuMgCl Time (min) Proposed Catalytic Active Species CoCl2 hydride source 3 – R'-MgX Co Co R' Co Mg+X A B Alkyl–Br 2 Natta, G. Chem. Commun. 1967. Hofmann, P. Angew. Chem. Int. Ed. 2008. 7 Reaxys Prize Club Symposium in Japan 2014.3.28 A Possible Mechanism – CoCl2 R'-MgX R(CH2)2MgX Co R' 1/2 R(CH2)2H Mg+X 2 1/2 R B CoCl R-X Co R(CH2)2MgX MgX2 A R Co 3 Co–H R R' R' R C Organorhodium L Rh Ar L L L Rh Organorhodium-catalyzed C–C bond formations L 1,4-Addition reaction "Ar–Rh" EWG Ar • Nucleophilic Ar group • Chiral induction H Ar–R Ar 1,2-Addition reaction O "Ar–Rh" or Ar Y Y Heck reaction RhI Y RhI–Ar R–X ox. add. "Ar–Rh" insertion "Ar–Rh" H Ar R O Ar etc... Fagnou, K. Lautens, M. Chem. Rev. 2003. O 8 Ar R R Coupling reaction O O "Ar–Rh" Y R' Ar' Hydroarylation R Ar OH RAr R' Ar' m–X R R Ar H–X RhI–X Ar–m X RhIII EWG Ar Reaxys Prize Club Symposium in Japan 2014.3.28 Anionic Diarylrhodium–Organorhodate L Rh Ar L L L ArMgX L Rh L L Ar – Rh Lewis acidic Ar Ar Mg+X More nucleophilic R1 Alkyl X + XMg R2 2 mol% CoCl2 4 mol% LiI 2 eq or R3 R1 THF, 50 ˚C R2 Alkyl R3 – R'-MgX Co Co R' Mg+X R-X –MgX2 Co R' R J. Am. Chem. Soc. 2013, 135, 9604. This Work–Rh-Catalyzed Cross-Coupling via C–O Bond Cleavage– cat. [RhCl(cod)]2 OR + Ar–m R' Ar R' THF, rt R = Ph, OAc, SiR3 m = MgX, ZnX OR O O O O R–m R–m O O S O O cat. M conventional methods R cat. M CF3 CH3 O O O R P N OR O R O OR O S N O N R O R R N N S This work O O O O S O N O Hal O O R m O Ph R SiR3 m = alkali metal Anionic Rhodium-Catalyzed Cross-Coupling Reaction will also be presented. 9
© Copyright 2024